The Appearance of the Giant Component in Descriptor Graphs and Its Application for Descriptor Selection

  • Anita Keszler
  • Levente Kovács
  • Tamás Szirányi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7488)

Abstract

The paper presents a random graph based analysis approach for evaluating descriptors based on pairwise distance distributions on real data. Starting from the Erdős-Rényi model the paper presents results of investigating random geometric graph behaviour in relation with the appearance of the giant component as a basis for choosing descriptors based on their clustering properties. Experimental results prove the existence of the giant component in such graphs, and based on the evaluation of their behaviour the graphs, the corresponding descriptors are compared, and validated in proof-of-concept retrieval tests.

Keywords

feature selection graph analysis giant components 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, W., Men, S., Xu, L., Xu, B.: Feature distribution based quick image retrieval. In: Proc. of Web Information Systems and Applications Conference, pp. 23–28 (2010)Google Scholar
  2. 2.
    Sun, Y., Todorovic, S., Goodison, S.: Local learning based feature selection for high dimensional data analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 32(9), 1610–1626 (2010)CrossRefGoogle Scholar
  3. 3.
    Morris, M., Kender, J.: Sort-merge feature selection and fusion methods for classification of unstructured video. In: Proc. of IEEE International Conference on Multimedia and Expo., pp. 578–581 (2009)Google Scholar
  4. 4.
    Shen, Y., Lu, H., Xue, X.: A Semi-automatic Feature Selecting Method for Sports Video Highlight Annotation. In: Qiu, G., Leung, C., Xue, X.-Y., Laurini, R. (eds.) VISUAL 2007. LNCS, vol. 4781, pp. 38–48. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Setia, L., Burkhardt, H.: Feature Selection for Automatic Image Annotation. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 294–303. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Guldogan, E., Gabbouj, M.: Feature selection for content-based image retrieval. Signal, Image and Video Processing 2(3), 241–250 (2008)MATHCrossRefGoogle Scholar
  7. 7.
    Li, F., Dai, Q., Xu, W.: Improved similarity-based online feature selection in region-based image retrieval. In: Proc. of IEEE Intl. Conference on Multimedia and Expo., pp. 349–352 (2006)Google Scholar
  8. 8.
    Spenser, J.: The giant component: The golden anniversary. Notices of the AMS 57, 720–724 (1975)Google Scholar
  9. 9.
    Erdős, P., Rényi, A.: On the evolution of random graphs. Publication of the Mathematical Institute of the Hungarian Academy of Sciences (1960)Google Scholar
  10. 10.
    Penrose, M.: Random Geometric Graphs. Oxford University Press (2003)Google Scholar
  11. 11.
    Meester, R., Roy, R.: Continuum Percolation. Cambridge University Press (1996)Google Scholar
  12. 12.
    Manjunath, B.S., Ohm, J.R., Vasudevan, V.V., Yamada, A.: Color and texture descriptors. IEEE Trans. on Circuits and Systems for Video Technology 2(6), 703–715 (2001)CrossRefGoogle Scholar
  13. 13.
    Kovács, L., Szirányi, T.: Focus area extraction by blind deconvolution for defining regions of interest. IEEE Tr. on Pattern Analysis and Machine Intelligence 29(6), 1080–1085 (2007)CrossRefGoogle Scholar
  14. 14.
    Ojala, T., Pietikainen, M.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(7) (2002)Google Scholar
  15. 15.
    Candes, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transforms. Multiscale Modeling and Simulation 5(3), 861–899 (2006)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anita Keszler
    • 1
  • Levente Kovács
    • 1
  • Tamás Szirányi
    • 1
  1. 1.Distributed Events Analysis Research Laboratory, Computer and Automation Research InstituteHungarian Academy of SciencesBudapestHungary

Personalised recommendations