Advertisement

Going beyond CLEF-IP: The ‘Reality’ for Patent Searchers?

  • Julia J. Jürgens
  • Preben Hansen
  • Christa Womser-Hacker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7488)

Abstract

This paper gives an overview of several different approaches that have been applied by participants in the CLEF-IP evaluation initiative. On this basis, it is suggested that other techniques and experimental paradigms could be helpful in further improving the results and making the experiments more realistic. The field of information seeking is therefore incorporated and its potential gain for patent retrieval explained. Furthermore, the different search tasks that are undertaken by patent searchers are introduced as possible use cases. They can serve as a basis for development in patent retrieval research in that they present the diverse scenarios with their special characteristics and give the research community therefore a realistic picture of the patent user’s work.

Keywords

Search Task Information Seek Patent Document Relevance Assessment Patent Examiner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lopez, P., Romary, L.: PATATRAS: Retrieval Model Combination and Regression Models for Prior Art Search. In: Peters, C., et al., pp. 430–437 (2010)Google Scholar
  2. 2.
    Peters, C., Di Nunzio, G.M., Kurimo, M., Mandl, T., Mostefa, D., Peñas, A., Roda, G. (eds.): CLEF 2009. LNCS, vol. 6241. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Petras, V., Forner, P., Clough, P.D. (eds.): CLEF 2011 Labs and Workshop, Notebook Papers, Amsterdam, The Netherlands, September 19-22 (2011)Google Scholar
  4. 4.
    Järvelin, A., Järvelin, A., Hansen, P.: UTA and SICS at CLEF-IP. In: Peters, C., et al., pp. 460–467 (2010)Google Scholar
  5. 5.
    Hansen, P.: Task-based information Seeking and Retrieval in the Patent Domain. Processes and Relationships. Academic Dissertation, University of Tampere (2011)Google Scholar
  6. 6.
    Becks, D., Görtz, M., Womser-Hacker, C.: Understanding information seeking in the patent domain and its impact on the interface design of IR systems. In: Proceedings of the HCIR 2010, New Brunswick, NJ, August 22 (2010)Google Scholar
  7. 7.
    Graf, E., Azzopardi, L., van Rijsbergen, K.: Automatically Generating Queries for Prior Art Search. In: Peters, C., et al., pp. 480–490 (2010)Google Scholar
  8. 8.
    Piroi, F., Zenz, V.: Evaluating Information Retrieval in the Intellectual Property Domain: The CLEF IP Campaign. In: Lupu, M., Tait, J., Trippe, A., Mayer, K. (eds.) Current Challenges in Patent Information Retrieval. Springer, Heidelberg (2011)Google Scholar
  9. 9.
    Magdy, W., Leveling, J., Jones, G.J.F.: DCU @ CLEF-IP 2009: Exploring Standard IR Techniques on Patent Retrieval. In: Peters, C., et al., pp. 410–417 (2010)Google Scholar
  10. 10.
    Seo, H.-K., Han, K., Lee, J.: CLEF-IP 2011 Working Notes: Utilizing Prior Art Candidate Search Results for Refined IPC Classification. In: Petras, V., et al, eds. (2011)Google Scholar
  11. 11.
    D’hondt, E., Verberne, S.: CLEF-IP 2010: Prior Art Retrieval using the different sections in patent documents. In: Braschler, M., et al. (2010)Google Scholar
  12. 12.
    Braschler, M., Harman, D., Pianta, E. (eds.): CLEF 2010 LABs and Workshops, Notebook Papers, Padua, Italy, September 22-23 (2010)Google Scholar
  13. 13.
    Magdy, W., Jones, G.J.F.: Applying the KISS Principle for the CLEF- IP 2010 Prior Art Candidate Patent Search Task. In: Braschler, M., et al. (2010)Google Scholar
  14. 14.
    Szarvas, G., Herbert, B., Gurevych, I.: Prior Art Search using International Patent Classification Codes and All-Claims-Queries. In: Peters, C., et al. (eds.), pp. 452–459 (2010)Google Scholar
  15. 15.
    D’hondt, E., Verberne, S., Alink, W., Cornacchia, R.: Combining Document Representations for Prior-art Retrieval. In: Petras, V., et al. (2011)Google Scholar
  16. 16.
    Becks, D., Eibl, M., Jürgens, J., Kürsten, J., Wilhelm, T., Womser-Hacker, C.: Does Patent IR profit from Linguistics or Maximum Query Length? In: Petras, V., et al. (2011)Google Scholar
  17. 17.
    Teodoro, D., Gobeill, J., Pasche, E., Vishnyakova, D., Ruch, P., Lovis, C.: Automatic prior art searching and patent encoding at CLEF-IP 2010. In: Braschler, M., et al. (2010)Google Scholar
  18. 18.
    Toucedo, J.C., Losada, D.E.: University of Santiago de Compostela at CLEF-IP09. In: Peters, C., et al., pp. 418–425 (2010)Google Scholar
  19. 19.
    Mahdabi, P., Andersson, L., Hanbury, A., Crestani, F.: Report on the CLEF-IP 2011 Experiments: Exploring Patent Summarization. In: Petras, V., et al. (2011)Google Scholar
  20. 20.
    Lopez, P., Romary, L.: Experiments with citation mining and key-term extraction for Prior Art Search. In: Braschler, M., et al. (2010)Google Scholar
  21. 21.
    Verma, M., Varma, V.: Exploring Keyphrase Extraction and IPC Classification Vectors for Prior Art Search. In: Petras, V., et al. (2011)Google Scholar
  22. 22.
    Alink, W., Cornacchia, R., de Vries, A.P.: Searching CLEF-IP by Strategy. In: Peters, C., et al. (eds.), pp. 468–475 (2010)Google Scholar
  23. 23.
    Correa, S., Buscaldi, D., Rosso, P.: NLEL-MAAT at CLEF-IP. In: Peters, C., et al. (eds.), pp. 438–443 (2010)Google Scholar
  24. 24.
    Marchionini, G.: Information seeking in electronic environments. Cambridge Univ. Press, Cambridge (1995)CrossRefGoogle Scholar
  25. 25.
    Adams, S.: Information Sources in Patents. KG Sauer, München (2006)Google Scholar
  26. 26.
    Hunt, D., Nguyen, L., Rodgers, M.: Patent Searching. Tools and techniques. John Wiley & Sons, Inc, Hoboken (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Julia J. Jürgens
    • 1
  • Preben Hansen
    • 2
  • Christa Womser-Hacker
    • 1
  1. 1.Department of Information Science and Natural Language ProcessingUniversity of HildesheimHildesheimGermany
  2. 2.Swedish Institute of Computer ScienceKistaSweden

Personalised recommendations