DIRECTions: Design and Specification of an IR Evaluation Infrastructure

  • Maristella Agosti
  • Emanuele Di Buccio
  • Nicola Ferro
  • Ivano Masiero
  • Simone Peruzzo
  • Gianmaria Silvello
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7488)


Information Retrieval (IR) experimental evaluation is an essential part of the research on and development of information access methods and tools. Shared data sets and evaluation scenarios allow for comparing methods and systems, understanding their behaviour, and tracking performances and progress over the time. On the other hand, experimental evaluation is an expensive activity in terms of human effort, time, and costs required to carry it out.

Software and hardware infrastructures that support experimental evaluation operation as well as management, enrichment, and exploitation of the produced scientific data provide a key contribution in reducing such effort and costs and carrying out systematic and throughout analysis and comparison of systems and methods, overall acting as enablers of scientific and technical advancement in the field. This paper describes the specification for an Information Retrieval (IR) evaluation infrastructure by conceptually modeling the entities involved in Information Retrieval (IR) experimental evaluation and their relationships and by defining the architecture of the proposed evaluation infrastructure and the APIs for accessing it.


Information Retrieval Evaluation Activity Conceptual Schema Data Cube Experimental Collection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harman, D.K.: Information Retrieval Evaluation. Morgan & Claypool Publishers, USA (2011)Google Scholar
  2. 2.
    Rowe, B.R., Wood, D.W., Link, A.L., Simoni, D.A.: Economic Impact Assessment of NIST’s Text REtrieval Conference (TREC) Program. RTI Project Number 0211875, RTI International, USA (2010),
  3. 3.
    Allan, J., et al.: Frontiers, Challenges, and Opportunities for Information Retrieval – Report from SWIRL 2012. In: The Second Strategic Workshop on Information Retrieval in Lorne, SIGIR Forum, vol. 46 (in print, February 2012)Google Scholar
  4. 4.
    Sanderson, M.: Test Collection Based Evaluation of Information Retrieval Systems. Foundations and Trends in Information Retrieval (FnTIR) 4, 247–375 (2010)zbMATHCrossRefGoogle Scholar
  5. 5.
    Armstrong, T.G., Moffat, A., Webber, W., Zobel, J.: Improvements That Don’t Add Up: Ad-Hoc Retrieval Results Since 1998. In: Proc. 18th International Conference on Information and Knowledge Management (CIKM 2009), pp. 601–610. ACM Press, New York (2009)Google Scholar
  6. 6.
    Zhang, J.: Visualization for Information Retrieval. Springer, Heidelberg (2008)zbMATHCrossRefGoogle Scholar
  7. 7.
    Newman, D., Baldwin, T., Cavedon, L., Huang, E., Karimi, S., Martínez, D., Scholer, F., Zobel, J.: Visualizing Search Results and Document Collections Using Topic Maps. Journal of Web Semantics 8, 169–175 (2010)CrossRefGoogle Scholar
  8. 8.
    Banks, D., Over, P., Zhang, N.F.: Blind Men and Elephants: Six Approaches to TREC data. Information Retrieval 1, 7–34 (1999)CrossRefGoogle Scholar
  9. 9.
    Sormunen, E., Hokkanen, S., Kangaslampi, P., Pyy, P., Sepponen, B.: Query performance analyser: a web-based tool for ir research and instruction. In: Järvelin, K., Beaulieu, M., Baeza-Yates, R., Hyon Myaeng, S. (eds.) Proceedings of SIGIR 2002, p. 450. ACM, New York (2002)CrossRefGoogle Scholar
  10. 10.
    Keim, D.A., Mansmann, F., Schneidewind, J., Ziegler, H.: Challenges in Visual Data Analysis. In: Banissi, E. (ed.) Proc. of the 10th International Conference on Information Visualization (IV 2006), pp. 9–16. IEEE Computer Society, Los Alamitos (2006)CrossRefGoogle Scholar
  11. 11.
    Di Buccio, E., Dussin, M., Ferro, N., Masiero, I., Santucci, G., Tino, G.: To Re-rank or to Re-query: Can Visual Analytics Solve This Dilemma? In: Forner, P., Gonzalo, J., Kekäläinen, J., Lalmas, M., de Rijke, M. (eds.) CLEF 2011. LNCS, vol. 6941, pp. 119–130. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Ferro, N., Sabetta, A., Santucci, G., Tino, G.: Visual Comparison of Ranked Result Cumulated Gains. In: Miksch, S., Santucci, G. (eds.) Proc. 2nd International Workshop on Visual Analytics (EuroVA 2011), pp. 21–24. Eurographics Association, Goslar (2011)Google Scholar
  13. 13.
    European Union: Riding the wave. How Europe can gain from the rising tide of scientific data. Printed by, Final report of the High level Expert Group on Scientific Data (2010)Google Scholar
  14. 14.
    Agosti, M., Di Nunzio, G.M., Ferro, N.: Scientific Data of an Evaluation Campaign: Do We Properly Deal with Them? In: Peters, C., Clough, P., Gey, F.C., Karlgren, J., Magnini, B., Oard, D.W., de Rijke, M., Stempfhuber, M. (eds.) CLEF 2006. LNCS, vol. 4730, pp. 11–20. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Di Nunzio, G.M., Ferro, N.: DIRECT: A System for Evaluating Information Access Components of Digital Libraries. In: Rauber, A., Christodoulakis, S., Tjoa, A.M. (eds.) ECDL 2005. LNCS, vol. 3652, pp. 483–484. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Dussin, M., Ferro, N.: Managing the Knowledge Creation Process of Large-Scale Evaluation Campaigns. In: Agosti, M., Borbinha, J., Kapidakis, S., Papatheodorou, C., Tsakonas, G. (eds.) ECDL 2009. LNCS, vol. 5714, pp. 63–74. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Agosti, M., Ferro, N., Thanos, C.: DESIRE 2011: First international workshop on data infrastructures for supporting information retrieval evaluation. In: Proc. of the 20th ACM International Conference on Information and Knowledge Management, pp. 2631–2632. ACM, New York (2011)Google Scholar
  18. 18.
    Voorhees, E.M., Harman, D.K.: TREC: Experiment and Evaluation in Information Retrieval. The MIT Press, MA (2005)Google Scholar
  19. 19.
    Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 4th edn. Addison Wesley, Reading (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Maristella Agosti
    • 1
  • Emanuele Di Buccio
    • 1
  • Nicola Ferro
    • 1
  • Ivano Masiero
    • 1
  • Simone Peruzzo
    • 1
  • Gianmaria Silvello
    • 1
  1. 1.Department of Information EngineeringUniversity of PaduaItaly

Personalised recommendations