Advertisement

(Re)Configuration Using Web Data: A Case Study on the Reviewer Assignment Problem

  • Anna Ryabokon
  • Axel Polleres
  • Gerhard Friedrich
  • Andreas A. Falkner
  • Alois Haselböck
  • Herwig Schreiner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7497)

Abstract

Constraint-based configuration is – on the one hand – one of the classical problem domains in AI and also in industrial practice. Additional problems arise, when configuration objects come from an open environment such as the Web, or in case of a reconfiguration. On the other hand, (re)configuration is a reasoning task very much ignored in the current (Semantic) Web reasoning literature, despite (i) the increased availability of structured data on the Web, particularly due to movements such as the Semantic Web and Linked Data, (ii) numerous practically relevant tasks in terms of using Web data involve (re)configuration. To bridge these gaps, we discuss the challenges and possible approaches for reconfiguration in an open Web environment, based on a practical use case leveraging Linked Data as a “component catalog” for configuration. In this paper, we present techniques to enhance existing review management systems with (re)configuration facilities and provide a practical evaluation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Communications of the ACM 54(12), 92–103 (2011)CrossRefGoogle Scholar
  2. 2.
    Falkner, A., Haselböck, A.: Challenges of Knowledge Evolution in Practice. In: Workshop on Intelligent Engineering Techniques for Knowledge Bases (IKBET 2010), pp. 1–5 (2010)Google Scholar
  3. 3.
    Friedrich, G., Ryabokon, A., Falkner, A., Haselböck, A., Schenner, G., Schreiner, H. (Re)configuration using Answer Set Programming. In: Proceedings of the IJCAI 2011 Workshop on Configuration, pp. 17–25 (2011)Google Scholar
  4. 4.
    Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to practice. Artif. Intell. 187, 52–89 (2012)CrossRefGoogle Scholar
  5. 5.
    Goldsmith, J., Sloan, R.: The AI conference paper assignment problem. In: Proceedings of AAAI Workshop on Preference Handling for Artificial Intelligence, Vancouver, BC, Canada, pp. 53–57 (2007)Google Scholar
  6. 6.
    Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space, Synthesis Lectures on the Semantic Web: Theory and Technology, vol. 1. Morgan & Claypool (2011)Google Scholar
  7. 7.
    Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduction. Cambridge University Press (2010)Google Scholar
  8. 8.
    Manlove, D., Irving, R., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants of stable marriage. Theoretical Computer Science 276(1-2), 261–279 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Recommendation, World Wide Web Consortium (2008), http://www.w3.org/TR/rdf-sparql-query/

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anna Ryabokon
    • 1
  • Axel Polleres
    • 2
  • Gerhard Friedrich
    • 1
  • Andreas A. Falkner
    • 2
  • Alois Haselböck
    • 2
  • Herwig Schreiner
    • 2
  1. 1.Alpen-Adria UniversitätKlagenfurtAustria
  2. 2.Siemens AG ÖsterreichViennaAustria

Personalised recommendations