Advertisement

Consistent Answers in Probabilistic Datalog+/– Ontologies

  • Thomas Lukasiewicz
  • Maria Vanina Martinez
  • Gerardo I. Simari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7497)

Abstract

The Datalog+/– family of ontology languages is especially useful for representing and reasoning over lightweight ontologies, and has many applications in the context of query answering and information extraction for the Semantic Web. It is widely accepted that it is necessary to develop a principled way to handle uncertainty in this domain. In addition to uncertainty as an inherent aspect of the Web, one must also deal with forms of uncertainty due to inconsistency. In this paper, we take an important step in this direction by developing inconsistency-tolerant semantics for query answering in a probabilistic extension of Datalog+/–. The main contributions of this paper are: (i) extension and generalization to probabilistic ontologies of the well-known concepts of repairs and consistent answers to queries from databases; (ii) complexity analysis for the problems of consistency checking, repair identification, and consistent query answering; and (iii) adaptation of the intersection semantics (a sound heuristic for consistent answers) to probabilistic ontologies, yielding a subset of probabilistic Datalog+/– that is tractable modulo the cost of computing probabilities.

Keywords

Probabilistic Atom Conjunctive Query Query Answering Probabilistic Answer Consistent Answer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent databases. In: Proc. PODS 1999, pp. 68–79 (1999)Google Scholar
  2. 2.
    Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Proc. ICALP 1981, pp. 73–85 (1981)Google Scholar
  3. 3.
    Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under expressive relational constraints. In: Proc. KR 2008, pp. 70–80 (2008)Google Scholar
  4. 4.
    Calì, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable query answering over ontologies. Journal of Web Semantics 14, 57–83 (2012)CrossRefGoogle Scholar
  5. 5.
    Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Proc. PODS 2008, pp. 149–158 (2008)Google Scholar
  6. 6.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answering. Theoretical Computer Science 336(1), 89–124 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Gottlob, G., Lukasiewicz, T., Simari, G.I.: Conjunctive Query Answering in Probabilistic Datalog+/– Ontologies. In: Rudolph, S., Gutierrez, C. (eds.) RR 2011. LNCS, vol. 6902, pp. 77–92. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under functional and inclusion dependencies. Journal of Computer and System Sciences 28(1), 167–189 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-Tolerant Semantics for Description Logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Lian, X., Chen, L., Song, S.: Consistent query answers in inconsistent probabilistic databases. In: Proc. SIGMOD 2010, pp. 303–314 (2010)Google Scholar
  11. 11.
    Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Inconsistency handling in Datalog+/– ontologies. In: Proc. ECAI 2012 (2012)Google Scholar
  12. 12.
    Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. ACM Transaction of Database Systems 4(4), 455–469 (1979)CrossRefGoogle Scholar
  13. 13.
    Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107–136 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas Lukasiewicz
    • 1
  • Maria Vanina Martinez
    • 1
  • Gerardo I. Simari
    • 1
  1. 1.Department of Computer ScienceUniversity of OxfordOxfordUK

Personalised recommendations