Advertisement

Spatial Misregistration of Virtual Human Audio: Implications of the Precedence Effect

  • David M. Krum
  • Evan A. Suma
  • Mark Bolas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7502)

Abstract

Virtual humans are often presented as mixed reality characters projected onto screens that are blended into a physical setting. Stereo loudspeakers to the left and right of the screen are typically used for virtual human audio. Unfortunately, stereo loudspeakers can produce an effect known as precedence, which causes users standing close to a particular loudspeaker to perceive a collapse of the stereo sound to that singular loudspeaker. We studied if this effect might degrade the presentation of a virtual character, or if this would be prevented by the ventriloquism effect. Our results demonstrate that from viewing distances common to virtual human scenarios, a movement equivalent to a single stride can induce a stereo collapse, creating conflicting perceived locations of the virtual human’s voice. Users also expressed a preference for a sound source collocated with the virtual human’s mouth rather than a stereo pair. These results provide several design implications for virtual human display systems.

Keywords

virtual human audio spatial sound stereo audio precedence effect ventriloquism effect mixed reality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bailenson, J.N., Blascovich, J., Beall, A.C., Loomis, J.M.: Equilibrium theory revisited: Mutual gaze and personal space in virtual environments. Presence-Teleop. Virt. 10, 583–598 (2001)CrossRefGoogle Scholar
  2. 2.
    Baldis, J.J.: Effects of spatial audio on memory, comprehension, and preference during desktop conferences. In: ACM CHI, pp. 166–173 (2001)Google Scholar
  3. 3.
    Berkhout, A.J.: A holographic approach to acoustic control. J. Audio Eng. Soc. 36(12), 977–995 (1988)Google Scholar
  4. 4.
    Berkhout, A.J., De Vries, D., Vogel, P.: Acoustic control by wave field synthesis. J. Acoust. Soc. Am. 93, 2764–2778 (1993)CrossRefGoogle Scholar
  5. 5.
    Bertelson, P.: Chapter 14 ventriloquism: A case of crossmodal perceptual grouping. In: Gisa Aschersleben, T.B., Msseler, J. (eds.) Cognitive Contributions to the Perception of Spatial and Temporal Events, Advances in Psychology, vol. 129, pp. 347–362. North-Holland (1999)Google Scholar
  6. 6.
    Blauert, J.: Räumliches Hören (Spatial Hearing). S. Hirzel-Verlag, Stuttgart (1974)Google Scholar
  7. 7.
    Choe, C., Welch, R., Gilford, R., Juola, J.: The ventriloquist effect: Visual dominance or response bias? Atten. Percept. Psycho. 18, 55–60 (1975)CrossRefGoogle Scholar
  8. 8.
    Courgeon, M., Rebillat, M., Katz, B., Clavel, C., Martin, J.C.: Life-sized audiovisual spatial social scenes with multiple characters: MARC & SMART-I2. In: Meeting of the French Association for Virtual Reality (2010)Google Scholar
  9. 9.
    Ericson, M.A., Brungart, D.S., Simpson, B.D.: Factors that influence intelligibility in multitalker speech displays. Int. J. Aviat. Psychol. 14, 313–334 (2004)CrossRefGoogle Scholar
  10. 10.
    Fellget, P.: Ambisonics. part one: General system description. Studio Sound 17, 20–22, 40 (August 1975)Google Scholar
  11. 11.
    Harima, T., Abe, K., Takane, S., Sato, S., Sone, T.: Influence of visual stimulus on the precedence effect in sound localization. Acoust. Sci. Tech. 30(4), 240–248 (2009)CrossRefGoogle Scholar
  12. 12.
    Ihlefeld, A., Sarwar, S.J., Shinn-Cunningham, B.G.: Spatial uncertainty reduces the benefit of spatial separation in selective and divided listening. J. Acoust. Soc. Am. 119(5), 3417–3417 (2006)Google Scholar
  13. 13.
    Jack, C.E., Thurlow, W.R.: Effects of degree of visual association and angle of displacement on the ”ventriloquism” effect. Percept. Motor Skill. 37, 967–979 (1973)CrossRefGoogle Scholar
  14. 14.
    Li, Z., Duraiswami, R., Davis, L.: Recording and reproducing high order surround auditory scenes for mixed and augmented reality. In: IEEE and ACM ISMAR, pp. 240–249 (November 2004)Google Scholar
  15. 15.
    Litovsky, R.Y., Colburn, H.S., Yost, W.A., Guzman, S.J.: The precedence effect. J. Acoust. Soc. Am. 106, 1633–1654 (1999)CrossRefGoogle Scholar
  16. 16.
    Sodnik, J., Tomazic, S., Grasset, R., Duenser, A., Billinghurst, M.: Spatial sound localization in an augmented reality environment. In: OZCHI, pp. 111–118 (2006)Google Scholar
  17. 17.
    Sundareswaran, V., Wang, K., Chen, S., Behringer, R., McGee, J., Tam, C., Zahorik, P.: 3D audio augmented reality: implementation and experiments. In: IEEE and ACM ISMAR, pp. 296–297 (October 2003)Google Scholar
  18. 18.
    Thomas, G.: Experimental study of the influence of vision on sound localization. J. Exp. Psychol. 28(2), 163–177 (1941)CrossRefGoogle Scholar
  19. 19.
    Wallach, H., Newman, E.B., Rosenzweig, M.R.: The precedence effect in sound localization. Am. J. Psychol. 62(3), 315–336 (1949)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • David M. Krum
    • 1
  • Evan A. Suma
    • 1
  • Mark Bolas
    • 1
  1. 1.Institute for Creative TechnologiesPlaya VistaUSA

Personalised recommendations