Real-Time Rendering of Teeth with No Preprocessing

  • Christian Thode Larsen
  • Jeppe Revall Frisvad
  • Peter Dahl Ejby Jensen
  • Jakob Andreas Bærentzen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7432)

Abstract

We present a technique for real-time rendering of teeth with no need for computational or artistic preprocessing. Teeth constitute a translucent material consisting of several layers; a highly scattering material (dentine) beneath a semitransparent layer (enamel) with a transparent coating (saliva). In this study we examine how light interacts with this multilayered structure. In the past, rendering of teeth has mostly been done using image-based texturing or volumetric scans. We work with surface scans and have therefore developed a simple way of estimating layer thicknesses. We use scattering properties based on measurements reported in the optics literature, and we compare rendered results qualitatively to images of ceramic teeth created by denturists.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander, O., Rogers, M., Lambeth, W., Chiang, J.Y., Ma, W.C., Wang, C.C., Debevec, P.: The digital Emily project: Achieving a photorealistic digital actor. IEEE Computer Graphics and Applications 30, 20–31 (2010)CrossRefGoogle Scholar
  2. 2.
    Alexander, O., Rogers, M., Lambeth, W., Chiang, M., Debevec, P.: The digital Emily project: Photoreal facial modeling and animation. ACM SIGGRAPH 2009 Course Notes (2009)Google Scholar
  3. 3.
    van Noort, R.: The future of dental devices is digital. Dental Materials 28, 3–12 (2012)CrossRefGoogle Scholar
  4. 4.
    Hanrahan, P., Krueger, W.: Reflection from layered surfaces due to subsurface scattering. Proceedings of ACM SIGGRAPH 1993, 165–174 (1993)Google Scholar
  5. 5.
    Hable, J., Borshukov, G., Hejl, J.: Fast skin shading. In: Engel, W. (ed.) ShaderX7, pp. 161–173. Charles River Media (2009)Google Scholar
  6. 6.
    Shetty, S., Bailey, M.: A physical rendering model for human teeth. ACM SIGGRAPH 2010 Posters (2010)Google Scholar
  7. 7.
    Shetty, S.: Layered rendering model for human teeth. Master’s thesis. Oregon State University (2011)Google Scholar
  8. 8.
    Botha, C.P., Post, F.H.: New technique for transfer function specification in direct volume rendering using real-time visual feedback. In: Mun, S.K. (ed.) Proceedings of the SPIE International Symposium on Medical Imaging 2002: Visualization, Image-Guided Procedures, and Display, vol. 4681, pp. 349–356 (2002)Google Scholar
  9. 9.
    Kniss, J., Kindlmann, G., Hansen, C.: Multidimensional transfer functions for interactive volume rendering. IEEE Transactions on Visualization and Computer Graphics 8, 270–285 (2002)CrossRefGoogle Scholar
  10. 10.
    Kim, L., Park, S.H.: Haptic interaction and volume modeling techniques for realistic dental simulation. The Visual Computer 22, 90–98 (2006)CrossRefGoogle Scholar
  11. 11.
    Rhienmora, P., Gajananan, K., Haddawy, P., Dailey, M.N., Suebnukarn, S.: Augmented reality haptics system for dental surgical skills training. In: Proceedings of the 17th Symposium on Virtual Reality Software and Technology (VRST 2010), pp. 97–98 (2010)Google Scholar
  12. 12.
    Yau, H.T., Hsu, C.Y.: Development of a dental training system based on point-based models. Computer-Aided Design and Applications 3, 779–787 (2006)Google Scholar
  13. 13.
    Wang, D.X., Zhang, Y., Wang, Y., Lu, P., Wang, Y.: Development of dental training system with haptic display. In: Proceedings of the 2003 IEEE International Workshop on Robot and Human Interactive Communication, pp. 159–164 (2003)Google Scholar
  14. 14.
    Wang, D., Zhang, Y., Wang, Y., Lü, P., Zhou, R., Zhou, W.: Haptic rendering for dental training system. Science in China Series F: Information Sciences 52, 529–546 (2009)MATHCrossRefGoogle Scholar
  15. 15.
    Pighin, F., Szeliski, R., Salesin, D.H.: Modeling and animating realistic faces from images. International Journal of Computer Vision 50, 143–169 (2002)MATHCrossRefGoogle Scholar
  16. 16.
    Zhang, Y., Sim, T., Tan, C.L., Sung, E.: Anatomy-based face reconstruction for animation using multi-layer deformation. Journal of Visual Languages and Computing 17, 126–160 (2006)CrossRefGoogle Scholar
  17. 17.
    Ishimaru, A.: Wave Propagation and Scattering in Random Media. Academic Press (1978)Google Scholar
  18. 18.
    Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. Proceedings of ACM SIGGRAPH 2001, 511–518 (2001)Google Scholar
  19. 19.
    Spitzer, D., Bosch, J.T.: The absorption and scattering of light in bovine and human dental enamel. Calcified Tissue Research 17, 129–137 (1975)CrossRefGoogle Scholar
  20. 20.
    Zijp, J., ten Bosch, J., Groenhuis, R.: HeNe-laser light scattering by human dental enamel. Journal of Dental Research 74, 1891–1898 (1995)CrossRefGoogle Scholar
  21. 21.
    Fried, D., Glena, R.E., Featherstone, J.D.B., Seka, W.: Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths. Applied Optics 34, 1278–1285 (1995)CrossRefGoogle Scholar
  22. 22.
    Zijp, J.R.: Optical properties of dental hard tissues. Doctoral dissertation. University of Groningen (2001)Google Scholar
  23. 23.
    Henyey, L.G., Greenstein, J.L.: Diffuse radiation in the galaxy. Annales d’Astrophysique 3, 117–137 (1940)Google Scholar
  24. 24.
    Jensen, H.W., Legakis, J., Dorsey, J.: Rendering of wet materials. In: Lischinski, D., Larson, G.W. (eds.) Rendering Techniques 1999 (Proceedings of EGWR 1999), pp. 273–282. Springer (1999)Google Scholar
  25. 25.
    Miller, G.S., Hoffman, C.R.: Illumination and reflection maps: Simulated objects in real environments. ACM SIGGRAPH 1984 Course Notes for Advanced Computer Graphics Animation (1984)Google Scholar
  26. 26.
    Greene, N.: Environment mapping and other applications of world projections. IEEE Computer Graphics and Applications 6(11), 21–29 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christian Thode Larsen
    • 1
  • Jeppe Revall Frisvad
    • 1
  • Peter Dahl Ejby Jensen
    • 2
  • Jakob Andreas Bærentzen
    • 1
  1. 1.Technical University of DenmarkDenmark
  2. 2.3Shape A/SKbh. KDenmark

Personalised recommendations