The Hybrid Algorithm for Procedural Generation of Virtual Scene Components

  • Tomasz Zawadzki
  • Dominik Kujawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7432)


The aim of this paper is to present a 3D hybrid shape construction that benefits from discrete and continuous modeling approaches. The proposed technique addresses the problem of automated modeling of virtual scene components such as caves, buildings and clouds. The approach combines two independent methods well known in three-dimensional computer graphics: shape grammar and shape morphing. The modeled structures are characterized by geometrical complexity with inner graph structure more optimized than in classical CSG approach. In this paper, we mainly focus on the description of the algorithm.


Algorithms 3D procedural modeling shape grammar computer graphics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wonka, P., Wimmer, M., Sillion, F., Ribarsky, W.: Instant architecture. ACM Transactions on Graphics 22(3), 669–677 (2003)CrossRefGoogle Scholar
  2. 2.
    Parish, Y.I.H., Muller, P.: Procedural modeling of cities. In: Proceedings (SIGGRAPH 2001), pp. 301–308. ACM Press, E. Fiume (2001)Google Scholar
  3. 3.
    Greuter, S., Parker, J., Stewart, N., Leach, G.: Real-time procedural generation of pseudo infinite cities. In: Proceedings (GRAPHITE 2003), pp. 87–95. ACM Press (2003)Google Scholar
  4. 4.
    Peytavie, A., Galin, E., Grosjean, J., Merrilou, S.: Arches: a Framework for Modelling Complex Terrains, Computer Graphics Forum. In: Proceedings EUROGRAPHICS 2009, vol. 28(2), pp. 457–467 (2009)Google Scholar
  5. 5.
    Warszawski, K., Nikiel, S.: A proposition of particle system-based technique for automated terrain surface modeling. In: Proceedings of the 5th International North American Conference on Intelligent Games and Simulation (Game-On-NA 2009), pp. 17–19 (2009) ISBN 978-9077381-49-6Google Scholar
  6. 6.
    Bouthors, A., Neyret, F.: Modelling Clouds Shape. In: Proceedings EUROGRAPHICS (2004)Google Scholar
  7. 7.
    Schpok, J., Simons, J., Ebert, D.S., Hansen, C.: A real-time cloud modeling, rendering, and animation system. In: Symposium on Computer Animation 2003, pp. 160–166 (2003)Google Scholar
  8. 8.
    Dobashi, Y., Kaneda, K., Yamashita, H., Okita, T., Nishita, T.: A simple, efficient method for realistic animation of clouds. In: Proceedings of ACM SIGGRAPH 2000, pp. 19–28 (2000)Google Scholar
  9. 9.
    Ebert, D.S.: Volumetric procedural implicit functions: A cloud is born. In: Whitted, T. (ed.) SIGGRAPH 1997 Technical Sketches Program, ACM SIGGRAPH. Addison Wesley (1997) ISBN 0-89791-896-7Google Scholar
  10. 10.
    Elinas, P., Sturzlinger, W.: Real-time rendering of 3D clouds. Journal of Graphics Tools 5(4), 33–45 (2000)zbMATHCrossRefGoogle Scholar
  11. 11.
    Nishita, T., Nakamae, E., Dobashi, Y.: Display of clouds taking into account multiple aniso-tropic scattering and sky light. In: Rushmeier, H. (ed.) SIGGRAPH 1996 Conference Proceedings, ACM SIGGRAPH, pp. 379–386. Addison Wesley (1996)Google Scholar
  12. 12.
    Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants, pp. 101–107. Springer (1991) ISBN 978-0387972978Google Scholar
  13. 13.
    Am Ende, B.A.: 3D Mapping of Underwater Caves. IEEE Computer Graphics Applications 21(2), 14–20 (2001)CrossRefGoogle Scholar
  14. 14.
    Boggus, M., Crawfis, R.: Procedural Creation of 3D Solution Cave Models. In: Proceedings of the 20th IASTED International Conference on Modelling and Simulation, pp. 180–186 (2009)Google Scholar
  15. 15.
    Boggus, M., Crawfis, R.: Explicit Generation of 3D Models of Solution Caves for Virtual Environments. In: Proceedings of the 2009 International Conference on Computer Graphics and Virtual Reality, pp. 85–90 (2009)Google Scholar
  16. 16.
    Schuchardt, P., Bowman, D.A.: The Benefits of Immersion for Spatial Understanding of Complex Underground Cave Systems. In: Proceedings of the 2007 ACM Symposium on Virtual Reality Software and Technology (VRST 2007), pp. 121–124 (2007)Google Scholar
  17. 17.
    Johnson, L., Yannakakis, G.N., Togelius, J.: Cellular Automata for Real-time Generation of Infinite Cave Levels. In: Proceedings of the 2010 Workshop on Procedural Content Generation in Games (PC Games 2010), pp. 1–4 (2010)Google Scholar
  18. 18.
    Clempner, J.B., Poznyak, A.S.: Convergence method, properties and computational complexity for Lyapunov games. The International Journal of Applied Mathematics and Computer Science 21(2), 349–361 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Di Trapani, L.J., Inanc, T.: NTGsim: A graphical user interface and a 3D simulator for nonlinear trajectory generation methodology. The International Journal of Applied Mathematics and Computer 20(2), 305–316 (2010)zbMATHGoogle Scholar
  20. 20.
    Stiny, G., Gips, J.: Shape grammars and the generative specification of painting and sculpture. In: Information Processing, vol. 71, pp. 1460–1465. North-Holland Publishing Company (1972)Google Scholar
  21. 21.
    Stiny, G.: Pictorial and Formal Aspects of Shape and Shape Grammars. Birkhauser Verlag, Basel (1975)Google Scholar
  22. 22.
    Stiny, G.: Introduction to shape and shape grammars. Environment Planning B 7(3), 343–361 (1980)CrossRefGoogle Scholar
  23. 23.
    Martyn, T.: A new approach to morphing 2D affine IFS fractals. Computers & Graphics 28, 249–272 (2004)CrossRefGoogle Scholar
  24. 24.
    Alexa, M., Cohen-Or, D., Levin, D.: As rigid as possible polygon morphing. Computers Graphics (SIGGRAPH 2000) 34, 157–164 (2000)Google Scholar
  25. 25.
    Wolberg, G.: Image morphing: a survey. The Visual Computer 14(8-9), 360–372 (1998)CrossRefGoogle Scholar
  26. 26.
    Lazarus, F., Verrous, A.: Three-dimensional metamorphosis: a survey. The Visual Computer 14(8-9), 373–389 (1998)CrossRefGoogle Scholar
  27. 27.
    Kent, J.R., Carlson, W.E., Parent, R.E.: Shape transformation for polyhedral objects. Computer Graphics (SIGGRAPH 1992) 26, 47–54 (1992)CrossRefGoogle Scholar
  28. 28.
    Lee, A.W.F., Dobkin, D., Sweldens, W., Shroeder, P.: Multiresolution mesh morphing. Computer Graphics (SIGGRAPH 1999) 26, 43–46 (1999)Google Scholar
  29. 29.
    Turk, G., O’Brien, J.F.: Shape Transformation using variational implicit functions. Computer Graphics (SIGGRAPH 1999) 33, 335–342 (1999)Google Scholar
  30. 30.
    Velho, L., Gomes, J., Figueiredo, L.H.: Implicit Objects in Computer Graphics. Springer (2002) ISBN: 978-0387984247Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tomasz Zawadzki
    • 1
  • Dominik Kujawa
    • 1
  1. 1.Faculty of Electrical Engineering and TelecommunicationsUniversity of Zielona GóraPoland

Personalised recommendations