Advertisement

Function Field Analysis for the Visualization of Flow Similarity in Time-Varying Vector Fields

  • Harald Obermaier
  • Kenneth I. Joy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7432)

Abstract

Modern time-varying flow visualization techniques that rely on advection are able to convey fluid transport, but cannot provide an accurate insight into local flow behavior over time or locally corresponding patterns in unsteady vector fields. We overcome these limitations of purely Lagrangian approaches by generalizing the concept of function fields to time-varying flows. This representation of unsteady vector-fields as stationary function fields, where every position in space is a vector-valued function supports the application of novel analysis techniques based on function correlation, and allows to answer data analysis questions that remain unanswered with classic time-varying vector field analysis techniques. Our results demonstrate how analysis of time-varying flow fields can benefit from a conversion into function field representations and show the robustness of our presented clustering techniques.

Keywords

Visualization Technique Dynamic Time Warping Flow Similarity Automatic Cluster Interactive Querying 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weiskopf, D., Erlebacher, G.: Flow visualization overview. In: Handbook of Visualization, pp. 261–278. Elsevier, Amsterdam (2005)CrossRefGoogle Scholar
  2. 2.
    McLouglin, T., Laramee, R.S., Peikert, R., Post, F.H., Chen, M.: Over two decades of integration-based geometric flow visualization. Comp. Graph. Forum 29, 1807–1829 (2010)CrossRefGoogle Scholar
  3. 3.
    Shi, K., Theisel, H., Hauser, H., Weinkauf, T., Matkovic, K., Hege, H.-C., Seidel, H.-P.: Path line attributes - an information visualization approach to analyzing the dynamic behavior of 3d time-dependent flow fields. In: Topology-Based Methods in Visualization II, Mathematics and Visualization, pp. 75–88. Springer (2009)Google Scholar
  4. 4.
    Xu, L., Shen, H.W.: Flow web: a graph based user interface for 3d flow field exploration. Visualization and Data Analysis 7530, 75300F (2010)Google Scholar
  5. 5.
    Wei, J., Wang, C., Yu, H., Ma, K.: A sketch-based interface for classifying and visualizing vector fields. In: Proc. of PacificVis 2010, pp. 129–136 (2010)Google Scholar
  6. 6.
    Lez, A., Zajic, A., Matkovic, K., Pobitzer, A., Mayer, M., Hauser, H.: Interactive exploration and analysis of pathlines in flow data. In: Proc. Int. Conf. in Central Europe on Comp. Grap., Vis. and Comp. Vision (WSCG 2011), pp. 17–24 (2011)Google Scholar
  7. 7.
    Garcke, H., Preußer, T., Rumpf, M., Telea, A., Weikard, U., van Wijk, J.: A continuous clustering method for vector fields. In: Proc. of the Conf. on Visualization 2000, pp. 351–358. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  8. 8.
    Schlemmer, M., Heringer, M., Morr, F., Hotz, I., Bertram, M.H., Garth, C., Kollmann, W., Hamann, B., Hagen, H.: Moment invariants for the analysis of 2d flow fields. IEEE Trans. Vis. Comput. Graph. 13, 1743–1750 (2007)CrossRefGoogle Scholar
  9. 9.
    Nagaraj, S., Natarajan, V., Nanjundiah, R.S.: A gradient-based comparison measure for visual analysis of multifield data. Comp. Graph. Forum 30, 1101–1110 (2011)CrossRefGoogle Scholar
  10. 10.
    Albrecht, H.-E.: Laser doppler and phase doppler measurement technique, 2nd edn. Springer, New York (2003)Google Scholar
  11. 11.
    Haller, G.: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D: Nonlinear Phenomena 149, 248–277 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Anderson, J.C., Gosink, L.J., Duchaineau, M.A., Joy, K.I.: Interactive visualization of function fields by range-space segmentation. Comp. Graph. Forum 28, 727–734 (2009)CrossRefGoogle Scholar
  13. 13.
    Mokhtarian, F., Mackworth, A.: Scale-based description and recognition of planar curves and two-dimensional objects. IEEE Trans. Pattern Anal. Mach. Intell. 8, 34–43 (1986)CrossRefGoogle Scholar
  14. 14.
    Agrawal, R., Lin, K., Sawhney, H.S., Shim, K.: Fast similarity search in the presence of noise, scaling, and translation in time-series databases. In: Proc. Int. Conf. on Very Large Data Bases, pp. 490–501. Morgan Kaufmann Publishers Inc., San Francisco (1995)Google Scholar
  15. 15.
    Grundy, E., Jones, M.W., Laramee, R.S., Wilson, R.P., Shepard, E.L.C.: Visualisation of Sensor Data from Animal Movement. Comp. Graph. Forum 28, 815–822 (2009)CrossRefGoogle Scholar
  16. 16.
    Van Wijk, J.J., Van Selow, E.R.: Cluster and calendar based visualization of time series data. In: Proc. IEEE Symposium on Information Visualization, pp. 4–9. IEEE Computer Society, Washington, DC (1999)Google Scholar
  17. 17.
    Hlawatsch, M., Leube, P., Nowak, W., Weiskopf, D.: Flow radar glyphs - static visualization of unsteady flow with uncertainty. IEEE Trans. Vis. Comput. Graph. 17, 1949–1958 (2011)CrossRefGoogle Scholar
  18. 18.
    Yi, B., Jagadish, H.V., Faloutsos, C.: Efficient retrieval of similar time sequences under time warping. In: Proc. of the 14th Int. Conf. on Data Engineering, ICDE 1998, pp. 201–208. IEEE Computer Society, Washington, DC (1998)Google Scholar
  19. 19.
    Burger, R., Muigg, P., Doleisch, H., Hauser, H.: Interactive cross-detector analysis of vortical flow data. In: Fifth Int. Conf. on Coordinated and Multiple Views in Exploratory Visualization, CMV 2007, pp. 98–110 (2007)Google Scholar
  20. 20.
    Qu, H., Chan, W., Xu, A., Chung, K., Lau, K., Guo, P.: Visual analysis of the air pollution problem in hong kong. IEEE Trans. Vis. Comput. Graph. 13, 1408–1415 (2007)CrossRefGoogle Scholar
  21. 21.
    Blinn, J.F.: A generalization of algebraic surface drawing. ACM Trans. Graph. 1, 235–256 (1982)CrossRefGoogle Scholar
  22. 22.
    Heyer, L.J., Kruglyak, S., Yooseph, S.: Exploring expression data: identification and analysis of coexpressed genes. Genome Research 9, 1106–1115 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Harald Obermaier
    • 1
  • Kenneth I. Joy
    • 1
  1. 1.Institute for Data Analysis and VisualizationUniversity of CaliforniaDavisUSA

Personalised recommendations