Panorama Image Construction Using Multiple-Photos Stitching from Biological Data

  • Joshua Rosenkranz
  • Yuan Xu
  • Xing Zhang
  • Lijun Yin
  • William Stein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7432)


This paper presents an image construction tool for biological image visualization and education using image matching and stitching approaches. The image matching technique is based on the algorithm SURF (Speeded-up Robust Feature) [3, 4], a successor to the popular feature detection algorithm SIFT (Scale Invariant Feature Transform) [1, 2]. Unlike a traditional image stitching approach, our tool assumes that biological images are taken on a linear model with similar degrees of overlap and orientation angle towards ground from air. With these aspects in mind, generated panoramas will display less distortion and more raw valuable details. Such a tool will facilitate the scientific research and education through applications of visual information processing in fields of Biology, Astronomy, Geology, etc.


image synthesis image stitching feature matching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brown, M., Lowe, D.: Automatic Panoramic image stitching using invariant features. IJCV 74, 59–73 (2007)CrossRefGoogle Scholar
  2. 2.
    Lowe, D.: Object recognition from local scale-invariant features. In: ICCV (1999)Google Scholar
  3. 3.
    Lowe, D.: Distinctive image features from scale-invariant key points, cascade filtering approach. IJCV 60, 91–110 (2004)CrossRefGoogle Scholar
  4. 4.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, V.: Speeded-Up Robust Features (SURF), technical report (2005)Google Scholar
  6. 6.
    Koenderink, J.: The structure of images. Biological Cybernetics 50, 363–370 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: IEEE International Conference of Computer Vision (ICCV 2001), pp. 525–531 (2001)Google Scholar
  8. 8.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. on PAMI 27, 1615–1630 (2005)Google Scholar
  9. 9.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR, vol. 1, pp. 511–518 (2001)Google Scholar
  10. 10.
    Szeliski, R.: Image Alignment and Stitching: A Tutorial. In: Microsoft Research (2006)Google Scholar
  11. 11.
    Lloyd, S.P.: Least Squares Quantization in PCM. IEEE Trans. on Information Theory IT-28(2) (March 1982)Google Scholar
  12. 12.
    Lindeberg, T.: Scale-space theory: A basic tool for analyzing structures at differ-ent scales. Journal of Applied Statistics 21(2), 225–270 (1994) (Supple-ment Advances in Applied Statistics: Statistics and Images) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Joshua Rosenkranz
    • 1
  • Yuan Xu
    • 1
  • Xing Zhang
    • 1
  • Lijun Yin
    • 1
  • William Stein
    • 2
  1. 1.Department of Computer ScienceState University of New York at BinghamtonUSA
  2. 2.Department of BiologyState University of New York at BinghamtonUSA

Personalised recommendations