Ensuring Relevant and Serendipitous Information Flow in Decentralized Online Social Network

  • Udeep Tandukar
  • Julita Vassileva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7557)

Abstract

This paper presents a novel peer-to-peer architecture for decentralized Online Social Network and a mechanism that allows each node to filter out irrelevant social data, while ensuring a level of serendipity, by letting important information pass, even if it does not fall in the areas of interest of the user. The evaluation of the approach, using an Erlang simulation with 2318 nodes shows that it works as it was designed to: with the increasing number of social data passing through the network, the nodes learn to filter out irrelevant data, while serendipitous important data is able to pass through the network. Future work will implement the mechanism in a decentralized OSN and evaluate it in a real community of users, in an enterprise context.

Keywords

Information propagation Online Social Network Decentralization Peer-to-peer system Relationship modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abel, F., Gao, Q., Houben, G.-J., Tao, K.: Analyzing User Modeling on Twitter for Personalized News Recommendations. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 1–12. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Albert, R., Barabasi, A.-L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74(1), 78 (2001)MathSciNetGoogle Scholar
  3. 3.
    Datta, A., Sharma, R.: GoDisco: Selective Gossip Based Dissemination of Information in Social Community Based Overlays. In: Aguilera, M.K., Yu, H., Vaidya, N.H., Srinivasan, V., Choudhury, R.R. (eds.) ICDCN 2011. LNCS, vol. 6522, pp. 227–238. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Heckmann, D., Schwartz, T., Brandherm, B.: Decentralized user modeling with UserML and GUMO. In: Workshop on Decentralized, Agent Based and Social Approaches to User Modelling (DASUM), 9th Intl Conference on User Modeling, Edinburgh, Scotland, pp. 61–64 (2005)Google Scholar
  5. 5.
    Nusrat, S., Vassileva, J.: Recommending Services in a Trust-Based Decentralized User Modeling System. In: Ardissono, L., Kuflik, T. (eds.) UMAP 2011 Workshops. LNCS, vol. 7138, pp. 230–242. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Pariser, E.: The Filter Bubble: What the Internet is Hiding From You. Penguin Press HC, New York (2011)Google Scholar
  7. 7.
    Pazzani, M.J., Billsus, D.: Content-Based Recommendation Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Tandukar, U., Vassileva, J.: Selective Propagation of Social Data in Decentralized Online Social Network. In: Ardissono, L., Kuflik, T. (eds.) UMAP 2011 Workshops. LNCS, vol. 7138, pp. 213–224. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Wang, Y., Vassileva, J.: Trust and reputation model in peer-to-peer networks. In: Proceedings Third International Conference on Peer-to-Peer Computing (P2P 2003), pp. 150–157 (September 2003)Google Scholar
  10. 10.
    Wilson, C., Boe, B., Sala, A., Puttaswamy, K.P.N., Zhao, B.Y.: User interactions in social networks and their implications. In: Proceedings of the 4th ACM European Conference on Computer Systems, pp. 205–218. ACM (2009)Google Scholar
  11. 11.
    Yeung, C.A., Liccardi, I., Lu, K., Seneviratne, O., Berners-Lee, T.: Decentralization: The future of online social networking. In: W3C Workshop on the Future of Social Networking Position Papers (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Udeep Tandukar
    • 1
  • Julita Vassileva
    • 1
  1. 1.Department of Computer ScienceUniversity of SaskatchewanSaskatchewanCanada

Personalised recommendations