Evolutionary Approach to Multiobjective Optimization of Portfolios That Reflect the Behaviour of Investment Funds

  • Krzysztof Michalak
  • Patryk Filipiak
  • Piotr Lipiński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7557)


This paper addresses a problem of finding portfolios that perform better than investment funds while showing similar behaviour. The quality of investment portfolio can be measured using various criteria such as the return and some kind of risk measurement. Investors seek to maximize return while minimizing risk. In order to achieve this goal various instruments are considered. One of the possibilities is to entrust the assets to an investment fund. Investment funds build their own portfolios of stocks, bonds, commodities, currencies, etc.

In this paper we consider the problem of finding a portfolio which outperforms a given investment fund with respect to both the return and the risk and which also behaves in a similar way to the given fund. The rationale behind such an approach is that investment strategies of mutual funds are prepared by experts and are therefore expected to be reasonably good in terms of both the return and the risk. To achieve the presented goal we use a multiobjective evolutionary algorithm with a dedicated ”division mutation” operator and a local search procedure. Presented method seems capable of building portfolios with desired qualities.


investment funds portfolio optimization multiobjective evolutionary optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauer, R.: Genetic Algorithms and Investment Strategies. Wiley, Chichester (1994)Google Scholar
  2. 2.
    Best, M.J.: Portfolio Optimization. Chapman & Hall/CRC (2010)Google Scholar
  3. 3.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Dempsey, I., O’Neill, M., Brabazon, A.: Adaptive Trading with Grammatical Evolution. In: Proceedings of the 2006 Congress on Evolutionary Computation (CEC 2006), pp. 2587–2592. IEEE, Los Alamitos (2006)Google Scholar
  5. 5.
    Dempster, M., Jones, C.: A Real-Time Adaptive Trading System using Genetic Programming. Quantitative Finance 1, 397–413 (2001)CrossRefGoogle Scholar
  6. 6.
    Filipiak, P., Michalak, K., Lipinski, P.: Infeasibility Driven Evolutionary Algorithm with ARIMA-Based Prediction Mechanism. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 345–352. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Haupt, R.L., Werner, D.H.: Genetic Algorithms in Electromagnetics, pp. 37–38. John Wiley & Sons, Inc. (2007)Google Scholar
  8. 8.
    Jaszkiewicz, A.: Genetic local search for multiobjective combinatorial optimization. European J. of Operational Research 137, 50–71 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Jorion, P.: Value at Risk: The New Benchmark for Managing Financial Risk. McGraw-Hill (2006)Google Scholar
  10. 10.
    Li, J., Taiwo, S.: Enhancing Financial Decision Making Using Multi-Objective Financial Genetic Programming. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 2171–2178 (2006)Google Scholar
  11. 11.
    Lipinski, P.: Dependency Mining in Large Sets of Stock Market Trading Rules. In: Pejas, J., Piegat, A. (eds.) Enhanced Methods in Computer Security, Biometric and Intelligent Systems, pp. 329–336. Kluwer Academic Publishers (2005)Google Scholar
  12. 12.
    Lipinski, P.: Discovering Stock Market Trading Rules Using Multi-layer Perceptrons. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 1114–1121. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Lipinski, P.: Evolutionary Strategies for Building Risk-Optimal Portfolios. In: Brabazon, A., O’Neill, M. (eds.) Natural Computing in Computational Finance. SCI, vol. 100, pp. 53–65. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Lipinski, P.: Frequent Knowledge Patterns in Evolutionary Decision Support Systems for Financial Time Series Analysis. In: Brabazon, A., O’Neill, M., Maringer, D.G. (eds.) Natural Computing in Computational Finance. SCI, vol. 293, pp. 131–145. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Michalak, K., Lipinski, P.: Prediction of high increases in stock prices using neural networks. Neural Network World 15(4), 359–366 (2005)Google Scholar
  16. 16.
    Radziukyniene, I., Zilinskas, A.: Evolutionary Methods for Multi-Objective Portfolio Optimization. In: Proceedings of the World Congress on Engineering 2008, pp. 1155–1159. Newswood Limited (2008)Google Scholar
  17. 17.
    Tsang, E., Li, J., Markose, S., Er, H., Salhi, A., Iori, G.: EDDIE in Financial Decision Making. Journal of Management and Economics 4(4) (2000)Google Scholar
  18. 18.
    Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Krzysztof Michalak
    • 1
  • Patryk Filipiak
    • 2
  • Piotr Lipiński
    • 2
  1. 1.Institute of Business InformaticsWroclaw University of EconomicsWroclawPoland
  2. 2.Institute of Computer ScienceUniversity of WroclawWroclawPoland

Personalised recommendations