Identification of the Compound Subjective Rule Interestingness Measure for Rule-Based Functional Description of Genes

  • Aleksandra Gruca
  • Marek Sikora
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7557)

Abstract

Methods for automatic functional description of gene groups are useful tools supporting the interpretation of biological experiments. The RuleGO algorithm provides functional interpretation of gene groups in a form of logical rules including combinations of Gene Ontology terms in their premises. The number of rules generated by the algorithm is usually huge and additional methods of rule quality evaluation and filtration are required in order to select the most interesting ones. In the paper, we apply the multicriteria decision making UTA method to obtain a ranking of rules based on subjective expert opinion which is provided in a form of an ordered list of several rules. The presented approach is applied to the well known data set from microarray experiment and the results are compared with the standard RuleGO compound rule quality measure.

Keywords

rule quality rule interestingness multicriteria decision making functional annotations Gene Ontology bioinformatics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jacquet-Lagreze, E., Siskos, J.: Assessing a set of additive utility functions for multicriteria decision-making, the UTA method. European Journal of Operational Research 10, 151–164 (1982)MATHCrossRefGoogle Scholar
  2. 2.
    Siskos, Y., Grigoroudis, E., Matsatsinis, N.: UTA methods. In: Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 297–343. Springer (2005)Google Scholar
  3. 3.
    Gruca, A., Sikora, M., Polański, A.: RuleGO: a logical rules-based tool for description of gene groups by means of gene ontology. Nucleic Acids Res. 39(suppl. 2), W293–W301 (2011)CrossRefGoogle Scholar
  4. 4.
    Ashburner, M., et al.: Gene Ontology: tool for the unification of biology. Nature Genetics 25, 25–29 (2000)CrossRefGoogle Scholar
  5. 5.
    Nogales-Cadenas, R., et al.: Genecodis: interpreting gene lists through enrichment analysis and integration of diverse biological information. Nucleic Acids Res. 37(suppl. 2), W317–W322 (2009)CrossRefGoogle Scholar
  6. 6.
    Sikora, M., Gruca, A.: Induction and selection of the most interesting gene ontology based multiattribute rules for descriptions of gene groups. Pattern Recognition Letters 32(2), 258–269 (2011)CrossRefGoogle Scholar
  7. 7.
    Gruca, A.: Characterization of gene groups using decision rules (in Polish). PhD thesis, Silesian University of Technology, Gliwice, Poland (2009)Google Scholar
  8. 8.
    Fürnkranz, J., Flach, P.: Roc ’n’ rule learning - towards a better understanding of covering algorithms. Machine Learning 58(1), 39–77 (2005)MATHCrossRefGoogle Scholar
  9. 9.
    Sikora, M., Gruca, A.: Quality improvement of rules based gene groups descriptions using information about GO terms importance occurring in premises of determined rules. Int. J. of Appl. Mathematics and Computer Science 20(3), 555–570 (2010)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Bairagi, R., Suchindran, C.: An estimation of the cutoff point maximizing sum of sensitivity and specificity. Indian Journal of Statistics 51, 263–269 (1989)MathSciNetGoogle Scholar
  11. 11.
    Lavrač, N., Flach, P.A., Zupan, B.: Rule Evaluation Measures: A Unifying View. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 174–185. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Eisen, M., et al.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95(25), 14863–14868 (1998)CrossRefGoogle Scholar
  13. 13.
    Bayardo, R.J., Agrawal, R.: Mining the most interesting rules. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, California, United States, pp. 145–154. ACM (1999)Google Scholar
  14. 14.
    Brzezinska, I., Greco, S., Slowinski, R.: Mining pareto-optimal rules with respect to support and ant-support. Engineering Applications of Artificial Intelligence 20(5), 587–600 (2007)CrossRefGoogle Scholar
  15. 15.
    Christensen, D.: Measuring confirmation. Journal of Philosophy XCVI, 437–461 (1999)CrossRefGoogle Scholar
  16. 16.
    Abe, H., Tsumoto, S.: Comparing accuracies of rule evaluation models to determine human criteria on evaluated rule sets. In: Proc. of the 2008 IEEE International Conference on Data Mining Workshops, Italy, pp. 1–7. IEEE Computer Society (2008)Google Scholar
  17. 17.
    Lenca, P., et al.: A multicriteria decision aid for interestingness measure selection. Lussi-tr-2004-01-em, LUSSI Department, GET/ENST, Bretagne, France (2004)Google Scholar
  18. 18.
    Brans, J., Mareschal, B.: PROMETHEE Methods. In: Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 163–195. Springer, New York (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Aleksandra Gruca
    • 1
  • Marek Sikora
    • 1
    • 2
  1. 1.Silesian University of TechnologyGliwicePoland
  2. 2.Institute of Innovative Technologies EMAGKatowicePoland

Personalised recommendations