Multigrid Narrow Band Surface Reconstruction via Level Set Functions

  • Jian Ye
  • Igor Yanovsky
  • Bin Dong
  • Rima Gandlin
  • Achi Brandt
  • Stanley Osher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7431)

Abstract

In this paper we propose a novel fast method for implicit surface reconstruction from unorganized point clouds. Our algorithm employs a multigrid solver on a narrow band of the level set function that represents the reconstructed surface, which greatly improves computational efficiency of surface reconstruction. The new model can accurately reconstruct surfaces from noisy unorganized point clouds that also have missing information.

Keywords

Level set multigrid method point cloud surface reconstruction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rogers, D.F.: An Introduction to NURBS. Morgan Kaufmann (2003)Google Scholar
  2. 2.
    Piegl, L., Tiller, W.: The NURBS book. Springer, Berlin (1996)Google Scholar
  3. 3.
    Amenta, N., Bern, M., Eppstein, D.: The crust and the β-skeleton: Combinatorial curve reconstruction. Graphical Models and Image Processing 60, 125–135 (1998)CrossRefGoogle Scholar
  4. 4.
    Amenta, N., Bern, M., Kamvysselis, M.: A new Voronoi-based surface reconstruction algorithm. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 415–421. ACM, New York (1998)Google Scholar
  5. 5.
    Boissonnat, J.D.: Geometric structures for three dimensional shape reconstruction. ACM Trans. Graphics 3, 266–286 (1984)CrossRefGoogle Scholar
  6. 6.
    Edelsbrunner, H.: Shape Reconstruction with Delaunay Complex. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 119–132. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Edelsbrunner, H., Mucke, E.P.: Three dimensional α shapes. ACM Trans. Graphics 13, 43–72 (1994)MATHCrossRefGoogle Scholar
  8. 8.
    Osher, S., Fedkiw, R.P.: Level set methods and dynamic implicit surfaces. Springer (2003)Google Scholar
  9. 9.
    Leung, S., Zhao, H.: A grid based particle method for moving interface problems. Journal of Computational Physics 228, 2993–3024 (2009)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Ruuth, S., Merriman, B.: A simple embedding method for solving partial differential equations on surfaces. Journal of Computational Physics (2007)Google Scholar
  11. 11.
    Carr, J.C., Fright, W.R., Beatson, R.K.: Surface interpolation with radial basis functions for medical imaging. IEEE Transactions on Medical Imaging 16, 96–107 (1997)CrossRefGoogle Scholar
  12. 12.
    Zhao, H.K., Osher, S., Fedkiw, R.: Fast surface reconstruction using the level set method. In: Proceedings of the IEEE Workshop on Variational and Level Set Methods in Computer Vision 2001, pp. 194–201. IEEE (2002)Google Scholar
  13. 13.
    Zhao, H.K., Osher, S., Merriman, B., Kang, M.: Implicit and non-parametric shape reconstruction from unorganized points using variational level set method. Computer Vision and Image Understanding 80, 295–319 (2000)MATHCrossRefGoogle Scholar
  14. 14.
    Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split bregman method: Segmentation and surface reconstruction. Journal of Scientific Computing 45, 272–293 (2010)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Ye, J., Bresson, X., Goldstein, T., Osher, S.: A Fast Variational Method for Surface Reconstruction from Sets of Scattered Points. CAM Report 10-01 (2010)Google Scholar
  16. 16.
    Gandlin, R.: Multigrid solvers for inverse problems. Ph.D. thesis, Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel (2004)Google Scholar
  17. 17.
    Zhao, H.: A fast sweeping method for eikonal equations. Mathematics of Computation 74, 603–628 (2005)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Tsai, Y., Cheng, L., Osher, S., Zhao, H.: Fast sweeping algorithms for a class of Hamilton-Jacobi equations. SIAM Journal on Numerical Analysis 41, 673–694 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Brandt, A.: Multigrid techniques. Ges. für Mathematik u. Datenverarbeitung (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jian Ye
    • 1
  • Igor Yanovsky
    • 2
    • 3
  • Bin Dong
    • 4
  • Rima Gandlin
    • 5
  • Achi Brandt
    • 1
    • 6
  • Stanley Osher
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaLos AngelesUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Joint Institute for Regional Earth System Science and EngineeringUniversity of CaliforniaLos AngelesUSA
  4. 4.Department of MathematicsThe University of ArizonaTucsonUSA
  5. 5.Department of MathematicsCarnegie Mellon UniversityPittsburghUSA
  6. 6.Department of Computer Science and Applied MathematicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations