Advertisement

Fast Illustrative Visualization of Fiber Tracts

  • Jesús Díaz-García
  • Pere-Pau Vázquez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7431)

Abstract

The visualization of human brain fibers is becoming a new challenge in the computer graphics field. Nowadays, with the aid of DTI and fiber tracking algorithms, complex geometric models consisting of massive sets of polygonal lines can be extracted. However, rendering such massive models often results in non-detailed, cluttered visualizations. In this paper we propose two methods (one object-space and another image-space) for the fast rendering of fiber tracts by including illustrative effects such as halos and ambient occlusion. We will show how our approaches provide extra visible cues that enhance the final result by removing clutter, thus revealing fibers’ shapes and orientations. Moreover, the use of ambient-occlusion based techniques improves the perception of their absolute and relative positions in space.

Keywords

Polygonal Line Stream Tube 640x480 800x600 1024x768 1280x1024 Soft Shadow Scene Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, S., Demiralp, C., Laidlaw, D.H.: Visualizing diffusion tensor mr images using streamtubes and streamsurfaces. IEEE Transactions on Visualization and Computer Graphics 9, 454–462 (2003)CrossRefGoogle Scholar
  2. 2.
    Enders, F., Sauber, N., Merhof, D., Hastreiter, P., Nimsky, C., Stamminger, M.: Visualization of white matter tracts with wrapped streamlines. In: Visualization, VIS 2005, pp. 51–58. IEEE (2005)Google Scholar
  3. 3.
    Otten, R., Vilanova, A., van de Wetering, H.: Illustrative white matter fiber bundles. Comput. Graph. Forum 29, 1013–1022 (2010)CrossRefGoogle Scholar
  4. 4.
    Tarini, M., Cignoni, P., Montani, C.: Ambient occlusion and edge cueing for enhancing real time molecular visualization. IEEE Trans. Vis. Comput. Graph. 12, 1237–1244 (2006)CrossRefGoogle Scholar
  5. 5.
    Everts, M.H., Bekker, H., Roerdink, J.B.T.M., Isenberg, T.: Depth-dependent halos: Illustrative rendering of dense line data. IEEE Transactions on Visualization and Computer Graphics 15, 1299–1306 (2009)CrossRefGoogle Scholar
  6. 6.
    Saito, T., Takahashi, T.: Comprehensible rendering of 3-d shapes. SIGGRAPH Comput. Graph. 24, 197–206 (1990)CrossRefGoogle Scholar
  7. 7.
    Díaz, J., Yela, H., Vázquez, P.: Vicinity occlusion maps: Enhanced depth perception of volumetric models. In: Computer Graphics International 2008, pp. 56–63 (2008)Google Scholar
  8. 8.
    Hensley, J., Scheuermann, T., Coombe, G., Singh, M., Lastra, A.: Fast summed-area table generation and its applications. Computer Graphics Forum 24, 547–555 (2005)CrossRefGoogle Scholar
  9. 9.
    Filion, D., McNaughton, R.: Effects & techniques. In: ACM SIGGRAPH 2008 Classes, SIGGRAPH 2008, pp. 133–164. ACM, New York (2008)CrossRefGoogle Scholar
  10. 10.
    Díaz, J., Vázquez, P., Navazo, I., Duguet, F.: Real-time ambient occlusion and halos with summed area tables. Computers & Graphics 34(4), 337–350 (2010)CrossRefGoogle Scholar
  11. 11.
    Mittring, M.: Finding next gen: Cryengine 2. In: ACM SIGGRAPH 2007: Courses, pp. 97–121. ACM, New York (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jesús Díaz-García
    • 1
  • Pere-Pau Vázquez
    • 1
  1. 1.MOVING GroupUniversitat Politècnica de CatalunyaSpain

Personalised recommendations