Advertisement

Ego-Motion Estimation Using Rectified Stereo and Bilateral Transfer Function

  • Giorgio Panin
  • Nassir W. Oumer
Conference paper
  • 3.2k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7431)

Abstract

We describe an ego-motion algorithm based on dense spatio-temporal correspondences, using semi-global stereo matching (SGM) and bilateral image warping in time. The main contribution is an improvement in accuracy and robustness of such techniques, by taking care of speed and numerical stability, while employing twice the structure and data for the motion estimation task, in a symmetric way. In our approach we keep the tasks of structure and motion estimation separated, respectively solved by the SGM and by our pose estimation algorithm. Concerning the latter, we show the benefits introduced by our rectified, bilateral formulation, that provides at the same time more robustness to noise and disparity errors, at the price of a moderate increase in computational complexity, further reduced by an improved Gauss-Newton descent.

Keywords

Point Cloud Motion Estimation Stereo Match Visual Servoing Visual Odometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Comport, A., Marchand, E., Pressigout, M., Chaumette, F.: Real-time markerless tracking for augmented reality: the virtual visual servoing framework. IEEE Trans. on Visualization and Computer Graphics 16, 615–628 (2006)CrossRefGoogle Scholar
  2. 2.
    Nistér, D., Naroditsky, O., Bergen, J.R.: Visual odometry. In: CVPR (1), pp. 652–659 (2004)Google Scholar
  3. 3.
    Mouragnon, E., Dekeyser, F., Sayd, P., Lhuillier, M., Dhome, M.: Real-time localization and 3d reconstruction. In: IEEE Conference of Vision and Pattern Recognition, Washington DC, vol. (1)Google Scholar
  4. 4.
    Strobl, K.H., Mair, E., Bodenmüller, T., Kielhöfer, S., Sepp, W., Suppa, M., Burschka, D., Hirzinger, G.: The Self-Referenced DLR 3D-Modeler. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, pp. 21–28 (2009), best paper finalistGoogle Scholar
  5. 5.
    Irani, M., Anandan, P.: About direct methods. In: Proc. Workshop Vision Algorithms: Theory Practice, pp. 267–277 (1999)Google Scholar
  6. 6.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision (darpa). In: Proceedings of the 1981 DARPA Image Understanding Workshop, pp. 121–130 (1981)Google Scholar
  7. 7.
    Baker, S., Matthews, I.: Equivalence and efficiency of image alignment algorithms. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, p. 1090 (2001)Google Scholar
  8. 8.
    Hager, G.D., Belhumeur, P.N.: Efficient region tracking with parametric models of geometry and illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 1025–1039 (1998)CrossRefGoogle Scholar
  9. 9.
    Comport, A.I., Malis, E., Rives, P.: Real-time quadrifocal visual odometry. I. J. Robotic Res. 29, 245–266 (2010)CrossRefGoogle Scholar
  10. 10.
    Hirschmüller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30, 328–341 (2008)CrossRefGoogle Scholar
  11. 11.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004) ISBN: 0521540518Google Scholar
  12. 12.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 1330–1334 (2000)CrossRefGoogle Scholar
  13. 13.
    Drummond, T., Cipolla, R.: Visual tracking and control using lie algebras. In: CVPR, vol. 02, pp. 2652–2659. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  14. 14.
    Strobl, K.H., Hirzinger, G.: Optimal hand-eye calibration. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2006, Beijing, China, October 9-15, pp. 4647–4653 (2006)Google Scholar
  15. 15.
    Vaudrey, T., Rabe, C., Klette, R., Milburn, J.: Differences between stereo and motion behavior on synthetic and real-world stereo sequences. In: 23rd International Conference of Image and Vision Computing New Zealand (IVCNZ 2008), pp. 1–6 (2008)Google Scholar
  16. 16.
    Ernst, I., Hirschmüller, H.: Mutual Information Based Semi-Global Stereo Matching on the GPU. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 228–239. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Silveira, G., Malis, E., Rives, P.: An effecient direct approach to visual slam. IEEE Transactions in Robotics 24, 969–979 (2008)CrossRefGoogle Scholar
  18. 18.
    Dame, A., Marchand, E.: Mutual information-based visual servoing. IEEE Trans. on Robotics 27 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Giorgio Panin
    • 1
  • Nassir W. Oumer
    • 1
  1. 1.Institute for Robotics and MechatronicsGerman Aerospace Center (DLR)WeßlingGermany

Personalised recommendations