Advertisement

Poisson Reconstruction of Extreme Submersed Environments: The ENDURANCE Exploration of an Under-Ice Antarctic Lake

  • Alessandro Febretti
  • Kristof Richmond
  • Shilpa Gulati
  • Christopher Flesher
  • Bartholomew P. Hogan
  • Andrew Johnson
  • William C. Stone
  • John Priscu
  • Peter Doran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7431)

Abstract

We evaluate the use of Poisson reconstruction to generate a 3D bathymetric model of West Lake Bonney, Antarctica. The source sonar dataset has been collected by the ENDURANCE autonomous vehicle in the course of two Antarctic summer missions. The reconstruction workflow involved processing 200 million datapoints to generate a high resolution model of the lake bottom, Narrows region and underwater glacier face. A novel and flexible toolset has been developed to automate the processing of the Bonney data.

Keywords

Autonomous Underwater Vehicle Move Little Square Occupancy Grid West Lake Oriented Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Forney, C., Forrester, J., Bagley, B., McVicker, W., White, J., Smith, T., Batryn, J., Gonzalez, A., Lehr, J., Gambin, T., et al.: Surface reconstruction of Maltese cisterns using ROV sonar data for archeological study. Advances in Visual Computing, 461–471 (2011)Google Scholar
  2. 2.
    Fairfield, N., Kantor, G., Wettergreen, D.: Real-Time SLAM with Octree Evidence Grids for Exploration in Underwater Tunnels. Journal of Field Robotics 24, 3–21 (2007)CrossRefGoogle Scholar
  3. 3.
    White, C., Hiranandani, D., Olstad, C.S., Buhagiar, K., Gambin, T., Clark, C.M.: The malta cistern mapping project: Underwater robot mapping and localization within ancient tunnel systems. J. Field Robot. 27, 399–411 (2010)CrossRefGoogle Scholar
  4. 4.
    McEwen, R., Thomas, H., Weber, D., Psota, F.: Performance of an AUV navigation system at arctic latitudesGoogle Scholar
  5. 5.
    McPhail, S.: Autosub operations in the Arctic and Antarctic. In: Griffiths, G., Collins, K. (eds.) Proceedings of the Masterclass in AUV Technology for Polar Science, National Oceanography Centre, pp. 27–38. Society for Underwater Technology, Southampton (2006)Google Scholar
  6. 6.
    Jakuba, M.V., Roman, C.N., Singh, H., Murphy, C., Kunz, C., Willis, C., Sato, T., Sohn, R.A.: Long-baseline acoustic navigation for under-ice autonomous underwater vehicle operations. Journal of Field Robotics, 861–879 (2008)Google Scholar
  7. 7.
    Okabe, A., Boots, B., Sugihara, K.: Spatial Tesselations, Concepts and Applications of Voronoi Diagrams. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Chichester (1992)Google Scholar
  8. 8.
    Fairfield, N., Jonak, D., Kantor, G.A., Wettergreen, D.: Field results of the control, navigation and mapping system of a hovering AUV. In: Proceedings of the Unmanned Untethered Submersible Technology Conference (UUST 2007). AUSI, Durham (2007)Google Scholar
  9. 9.
    Papadopoulos, G., Kurniawati, H., Bin Mohd Shariff, A.S., Patrikalakis, N.M.: 3D-surface reconstruction for partially submerged marine structures using an Autonomous Surface Vehicle. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3551–3557 (2011)Google Scholar
  10. 10.
    Kazhdan, M., Bolitho, M., Hoppe, H., Burns, R.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, Eurographics Association, pp. 61–70 (2006)Google Scholar
  11. 11.
    Richmond, K., Febretti, A., Gulati, S., Flesher, C., Hogan, B.P., Murarka, A., Kuhlman, G., Sridharan, M., Johnson, A., Stone, W.C., Priscu, J., Doran, P.: Sub-Ice exploration of an antarctic lake: results from the ENDURANCE project. Arctic (2011)Google Scholar
  12. 12.
    Dushaw, B.D., Worcester, P.F., Cornuelle, B.D., Howe, B.M.: On equations for the speed of sound in seawater. Acoustical Society of America Journal 93, 255–275 (1993)CrossRefGoogle Scholar
  13. 13.
    Hoppe, H.: Poisson surface reconstruction and its applications. In: Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling (SPM 2008), p. 10 (2008)Google Scholar
  14. 14.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. SIGGRAPH Comput. Graph. 21, 163–169 (1987)CrossRefGoogle Scholar
  15. 15.
    Wilhelms, J., Van Gelder, A.: Octrees for faster isosurface generation. ACM Trans. Graph. 11, 201–227 (1992)zbMATHCrossRefGoogle Scholar
  16. 16.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. ACM SIGGRAPH Computer Graphics 26, 71–78 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alessandro Febretti
    • 2
  • Kristof Richmond
    • 1
  • Shilpa Gulati
    • 1
  • Christopher Flesher
    • 1
  • Bartholomew P. Hogan
    • 1
  • Andrew Johnson
    • 2
  • William C. Stone
    • 1
  • John Priscu
    • 3
  • Peter Doran
    • 4
  1. 1.Stone AerospaceDel ValleUSA
  2. 2.Dept. of Computer ScienceElectronic Visualization Laboratory, University of Illinois at ChicagoChicagoUSA
  3. 3.Dept. of Land Resources and Environmental SciencesMontana State UniversityBozemanUSA
  4. 4.Dept. of Earth and Environmental SciencesUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations