Advertisement

3D Texture Mapping in Multi-view Reconstruction

  • Zhaolin Chen
  • Jun Zhou
  • Yisong Chen
  • Guoping Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7431)

Abstract

This paper proposes a novel framework for texture mapping of 3D models. Given a reconstructed 3D mesh model and a set of calibrated images, a high-quality texture mosaic of the surface can be created after the process of our method. We focus on avoiding noticeable seams, color inconsistency and ghosting artifacts, which is typically due to such facts as modeling inaccuracy, calibration error and photometric disagreement. We extend the multi-band blending technique in a principled manner and apply it to assemble texture images in different frequency domains elaborately. Meanwhile, self-occlusion and highlight problem is taken into account. Then a novel texture map creating method is employed. Experiments based on our 3D Reconstruction System show the effectiveness of our texturing framework.

Keywords

Texture Data Mesh Triangle Image Mosaic Laplacian Pyramid Gaussian Pyramid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baumberg, A.: Blending Images for Texturing 3D Models. In: BMVC (2002)Google Scholar
  2. 2.
    Digne, J., Morel, J.-M., Audfray, N., Lartigue, C.: High Fidelity Scan Merging. Computer Graphics Forum 29(5) (2010)Google Scholar
  3. 3.
    Allene, C., Pons, J.-P., Keriven, R.: Seamless Image-Based Texture Atlases using Multi-band Blending. In: ICPR (2008)Google Scholar
  4. 4.
    Lempitsky, V., Ivanov, D.: Seamless Mosaicing of Image-Based Texture Maps. In: CVPR (2007)Google Scholar
  5. 5.
    Gal, R., Wexler, Y., Ofek, E., Hoppe, H., Cohen-Or, D.: Seamless Montage for texturing Models. In: EUROGRAPHICS (2010)Google Scholar
  6. 6.
    Goldluecke, B., Cremers, D.: Superresolution Texture Maps for Multiview Reconstruction. In: ICCV (2009)Google Scholar
  7. 7.
    Burt, P.J., Adelson, E.H.: A Multiresolution Spline with Application to Image Mosaics. ACM Trans. on Graphics 2(4) (1983)Google Scholar
  8. 8.
    Tan, R.T., Ikeuchi, K.: Separating Reflection Components of Textured Surfaces Using a Single Image. In: ICCV (2003)Google Scholar
  9. 9.
    Tan, P., Lin, S., Quan, L.: Separation of Highlight Reflections on Textured Surfaces. In: CVPR (2006)Google Scholar
  10. 10.
    Yang, Q., Wang, S., Ahuja, N.: Real-Time Specular Highlight Removal Using Bilateral Filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 87–100. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Lin, S., Li, Y., Kang, S.B., Tong, X., Shum, H.-Y.: Diffuse-Specular Separation and Depth Recovery from Image Sequences. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 210–224. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Petschnigg, G., Agrawala, M., Hoppe, H., Szeliski, R., Cohen, M., Toyama, K.: Digital Photography with Flash and No-Flash Image Pairs. In: SIGGRAPH (2004)Google Scholar
  13. 13.
    Agrawal, A., Raskar, R., Nayar, S.K., Li, Y.: Removing Photography Artifacts using Gradient Projection and Flash-Exposure Sampling. In: SIGGRAPH (2005)Google Scholar
  14. 14.
    Perez, P., Gangnet, M., Blake, A.: Poisson Image Editing. In: SIGGRAPH (2003)Google Scholar
  15. 15.
    Feng, J., Zhou, B.: Automatic Highlight Removal in Visual Hull Rendering by Poisson Editing. In: VRCAI (2008)Google Scholar
  16. 16.
    Maruya, M.: Generating a Texture Map from Object-Surface Texture Data. In: EUROGRAPHICS, vol. 14(3) (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zhaolin Chen
    • 1
  • Jun Zhou
    • 1
  • Yisong Chen
    • 1
  • Guoping Wang
    • 1
  1. 1.Graphics and Interactive Technology LabPeking UniversityChina

Personalised recommendations