Bundle Visualization Strategies for HARDI Characteristics

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7431)


In this paper we present visualization approaches for HARDI-based neuronal pathway representations using fiber encompassing hulls. We introduce novel bundle visualization techniques to indicate characteristics, such as information about tract integrity and multiple intra-voxel diffusion orientations. To accomplish this task, we developed an intra-bundle raycasting approach and use color mappings to encode diffusion characteristics on the bundle’s surface. Additionally, we implemented a slicing approach using a plane orthogonal to the centerline of a bundle which reveals intra-bundle diffusion characteristics as well as the local bundle shape. With the presented approaches, we simultaneously reveal features of fiber bundles such as integrity or information about the underlying diffusion profile as well as context information, the shape of a current tract.


Fractional Anisotropy Orientation Distribution Function Color Mapping High Angular Resolution Centrum Semiovale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Merhof, D., Meister, M., Bingöl, E., Nimsky, C., Greiner, G.: Isosurface-based generation of hulls encompassing neuronal pathways. Stereotactic and Functional Neurosurgery, 50–60 (2009)Google Scholar
  2. 2.
    Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine 44, 625–632 (2000)CrossRefGoogle Scholar
  3. 3.
    Lazar, M., Weinstein, D.M., Tsuruda, J.S., Hasan, K.M., Arfanakis, K., Meyerand, M.E., Badie, B., Rowley, H.A., Haughton, V., Field, A., Alexander, A.L.: White matter tractography using diffusion tensor deflection. Human Brain Mapping 18 (2003)Google Scholar
  4. 4.
    Descoteaux, M., Deriche, R., Knösche, T.R., Anwander, A.: Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Transactions on Medical Imaging 28 (2009)Google Scholar
  5. 5.
    Kindlmann, G.L.: Superquadric tensor glyphs. In: VisSym., pp. 147–154 (2004)Google Scholar
  6. 6.
    Peeters, T.H.J.M., Prckovska, V., van Almsick, M., Vilanova, A., ter Haar Romeny, B.M.: Fast and sleek glyph rendering for interactive HARDI data exploration. In: PacificVis., pp. 153–160 (2009)Google Scholar
  7. 7.
    Zhang, S., Demiralp, Ç., Laidlaw, D.H.: Visualizing diffusion tensor MR images using streamtubes and streamsurfaces. IEEE Transactions on Visualization and Computer Graphics 9, 454–462 (2003)CrossRefGoogle Scholar
  8. 8.
    Klein, J., Hermann, S., Konrad, O., Hahn, H.K., Peitgen, H.O.: Automatic quantification of DTI parameters along fiber bundles. In: Bildverarbeitung für die Medizin (2007)Google Scholar
  9. 9.
    Goldau, M., Wiebel, A., Hlawitschka, M., Scheuermann, G., Tittgemeyer, M.: Visualizing DTI parameters on boundary surfaces of white matter fiber bundles. In: Proceedings of the Twelfth IASTED International Conference on Computer Graphics and Imaging, pp. 53–61 (2011)Google Scholar
  10. 10.
    MeVis Medical Solutions AG: MeVisLab, medical image processing and visualization (December 2011),
  11. 11.
    Poupon, C., Poupon, F., Allirol, L., Mangin, J.F.: A database dedicated to anatomo-functional study of human brain connectivity. In: 12th HBM Neuroimage, Florence, Italie, Number 646 (2006)Google Scholar
  12. 12.
    Tuch, D.S.: Q-ball imaging. Magnetic Resonance in Medicine 52, 1358–1372 (2004)CrossRefGoogle Scholar
  13. 13.
    Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast and robust analytical Q-ball imaging. Magnetic Resonance in Medicine 58, 497–510 (2007)CrossRefGoogle Scholar
  14. 14.
    Röttger, D., Seib, V., Müller, S.: Distance-based tractography in high angular resolution diffusion MRI. The Visual Computer 27, 729–738 (2011)CrossRefGoogle Scholar
  15. 15.
    Röttger, D., Dudai, D., Merhof, D., Müller, S.: ISMI: A classification index for high angular resolution diffusion imaging. In: Proceedings of SPIE Medical Imaging (2012)Google Scholar
  16. 16.
    Chen, W., Zhang, S., Correia, S., Ebert, D.S.: Abstractive representation and exploration of hierarchically clustered diffusion tensor fiber tracts. Computer Graphics Forum 27, 1071–1078 (2008)CrossRefGoogle Scholar
  17. 17.
    Saito, T., Takahashi, T.: Comprehensible rendering of 3-D shapes. In: Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1990, pp. 197–206. ACM, New York (1990)CrossRefGoogle Scholar
  18. 18.
    Mittring, M.: Finding Next Gen - CryEngine 2. In: ACM SIGGRAPH 2007 Courses. SIGGRAPH 2007, pp. 97–121 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute for Computational VisualisticsUniversity of Koblenz-LandauGermany
  2. 2.Visual ComputingUniversity of KonstanzGermany

Personalised recommendations