Advertisement

Simulation of the Abdominal Wall and Its Arteries after Pneumoperitoneum for Guidance of Port Positioning in Laparoscopic Surgery

  • J. Bano
  • A. Hostettler
  • S. A. Nicolau
  • C. Doignon
  • H. S. Wu
  • M. H. Huang
  • L. Soler
  • J. Marescaux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7431)

Abstract

During laparoscopic surgery, the trocar insertion can injure arteries of the abdominal wall. Although these arteries are visible in a preoperative computed tomography [CT] with contrast medium, it is difficult for the surgeon to estimate their true intraoperative positions since the pneumoperitoneum dramatically stretches the abdominal wall. A navigation system showing the artery position would thus be very helpful for the surgeon. We present in this paper a method to simulate the position of the abdominal wall and its arteries after pneumoperitoneum. Our method requires a segmented preoperative CT image and an intraoperative surface reconstruction of the skin. The intraoperative skin surface allows us to compute a displacement field of the abdominal wall’s outer surface that we propagate to estimate the artery position.

Our simulation was evaluated using two sets of pig CT images, before and after pneumoperitoneum. Results show that our method provides an estimation of the abdominal wall and artery positions with an average error of respectively 2 mm and 6 mm which fits the clinical application constraint. In the near future, we will focus on viscera movement simulation after pneumoperitoneum using our abdominal wall shape prediction.

Keywords

Predictive simulation pneumoperitoneum skin tracking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sanchez-Margallo, F.M., et al.: Anatomical changes due to pneumoperitoneum analyzed by mri: an experimental study in pigs. Surg. Radiol. Anat. 33(5), 389–396 (2011)CrossRefGoogle Scholar
  2. 2.
    Marescaux, J., et al.: Augmented-reality–assisted laparoscopic adrenalectomy. JAMA: the Journal of the American Medical Association 292(18), 2214 (2004)CrossRefGoogle Scholar
  3. 3.
    Masamune, K., Sato, I., Liao, H., Dohi, T.: Non-metal Slice Image Overlay Display System Used Inside the Open Type MRI. In: Dohi, T., Sakuma, I., Liao, H. (eds.) MIAR 2008. LNCS, vol. 5128, pp. 385–392. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Nicolau, S.A., et al.: A cost effective simulator for education of ultrasound image interpretation and probe manipulation. Studies in Health Technology and Informatics 163, 403 (2011)Google Scholar
  5. 5.
    Saber, A.A., et al.: Safety zones for anterior abdominal wall entry during laparoscopy: a ct scan mapping of epigastric vessels. Annals of Surgery 239(2), 182 (2004)CrossRefGoogle Scholar
  6. 6.
    Lam, A., et al.: Dealing with complications in laparoscopy. Best Practice & Research Clinical Obstetrics & Gynaecology 23(5), 631–646 (2009)CrossRefGoogle Scholar
  7. 7.
    Geraci, G., et al.: Trocar-related abdominal wall bleeding in 200 patients after laparoscopic cholecistectomy: Personal experience. World Journal of Gastroenterology 12(44), 7165 (2006)Google Scholar
  8. 8.
    Kitasaka, T., Mori, K., Hayashi, Y., Suenaga, Y., Hashizume, M., Toriwaki, J.-i.: Virtual Pneumoperitoneum for Generating Virtual Laparoscopic Views Based on Volumetric Deformation. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004, Part II. LNCS, vol. 3217, pp. 559–567. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Shekhar, R., et al.: Live augmented reality: a new visualization method for laparoscopic surgery using continuous volumetric computed tomography. Surgical Endoscopy, 1–10 (2010)Google Scholar
  10. 10.
    Nakamoto, M., et al.: Recovery of respiratory motion and deformation of the liver using laparoscopic freehand 3d ultrasound system. Medical Image Analysis 11(5), 429–442 (2007)CrossRefGoogle Scholar
  11. 11.
    Konishi, K., et al.: Augmented reality navigation system for endoscopic surgery based on three-dimensional ultrasound and computed tomography: Application to 20 clinical cases. International Congress Series, vol. 1281, pp. 537–542. Elsevier (2005)Google Scholar
  12. 12.
    Su, L.M., et al.: Augmented reality during robot-assisted laparoscopic partial nephrectomy: Toward real-time 3d-ct to stereoscopic video registration. Urology 73(4), 896–900 (2009)CrossRefGoogle Scholar
  13. 13.
    Oda, M., et al.: Evaluation of deformation accuracy of a virtual pneumoperitoneum method based on clinical trials for patient-specific laparoscopic surgery simulator. In: Proceedings of SPIE, vol. 8316, p. 83160G (2012)Google Scholar
  14. 14.
    Hostettler, A., et al.: Real time simulation of organ motions induced by breathing: First evaluation on patient data. Biomedical Simulation, 9–18 (2006)Google Scholar
  15. 15.
    Nicolau, S.A., et al.: A structured light system to guide percutaneous punctures in interventional radiology. In: Proceedings of SPIE, vol. 7000, p. 700016 (2008)Google Scholar
  16. 16.
    Besl, P.J., et al.: A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • J. Bano
    • 1
    • 2
  • A. Hostettler
    • 1
  • S. A. Nicolau
    • 1
  • C. Doignon
    • 2
  • H. S. Wu
    • 3
  • M. H. Huang
    • 3
  • L. Soler
    • 1
  • J. Marescaux
    • 1
  1. 1.IRCADStrasbourg CedexFrance
  2. 2.LSIIT (UMR 7005 CNRS)University of Strasbourg, Parc d’InnovationIllkirch CedexFrance
  3. 3.IRCAD TaiwanMedical Imaging TeamLukangTaiwan

Personalised recommendations