SHARP: Private Proximity Test and Secure Handshake with Cheat-Proof Location Tags

  • Yao Zheng
  • Ming Li
  • Wenjing Lou
  • Y. Thomas Hou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7459)


A location proximity test service allows mobile users to determine whether they are in close proximity to each other, and has found numerous applications in mobile social networks. Unfortunately, existing solutions usually reveal much of users’ private location information during proximity test. They are also vulnerable to location cheating where an attacker reports false locations to gain advantage. Moreover, the initial trust establishment among unfamiliar users in large scale mobile social networks has been a challenging task. In this paper, we propose a novel scheme that enables a user to perform (1) privacy-preserving proximity test without revealing her actual location to the server or other users not within the proximity, and (2) secure handshake that establishes secure communications among stranger users within the proximity who do not have pre-shared secret. The proposed scheme is based on a novel concept, i.e. location tags, and we put forward a location tag construction method using environmental signals that provides location unforgeability. Bloom filters are used to represent the location tags efficiently and a fuzzy extractor is exploited to extract shared secrets between matching location tags. Our solution also allows users to tune their desired location privacy level and range of proximity. We conduct extensive analysis and real experiments to demonstrate the feasibility, security, and efficiency of our scheme.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.: Location privacy via private proximity testing. In: Proc. 18th Annual Network & Distributed System Security Symposium (2011)Google Scholar
  2. 2.
    Li, M., Cao, N., Yu, S., Lou, W.: Findu: Privacy-preserving personal profile matching in mobile social networks. In: Proc. 30th IEEE International Conference on Computer Communications (2011)Google Scholar
  3. 3.
    Li, M., Lou, W., Ren, K.: Data security and privacy in wireless body area networks. Journal of Wireless Communications 17(1) (2010)Google Scholar
  4. 4.
    Liang, X., Lu, R., Chen, L., Lin, X., Shen, X.: Pec: A privacy-preserving emergency call scheme for mobile healthcare social networks. Journal of Communications and Networks 13(2) (2011)Google Scholar
  5. 5.
    He, W., Liu, X., Ren, M.: Location cheating: A security challenge to location-based social network services. In: Proc. 31st IEEE International Conference on Distributed Computing Systems (2011)Google Scholar
  6. 6.
    Tsai, J.Y., Kelley, P.G., Cranor, L.F., Sadeh, N.: Location-sharing technologies: Privacy risks and controls. I/S: A Journal of Law & Policy for the Information Society 6, 119–317 (2010)Google Scholar
  7. 7.
    Zhu, Z., Cao, G.: Applaus: A privacy-preserving location proof updating system for location-based services. In: Proc. 30th IEEE International Conference on Computer Communications (2011)Google Scholar
  8. 8.
    Šikšnys, L., Thomsen, J.R., Šaltenis, S., Yiu, M.L., Andersen, O.: A Location Privacy Aware Friend Locator. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent, I. (eds.) SSTD 2009. LNCS, vol. 5644, pp. 405–410. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Meyerowitz, J., Choudhury, R.R.: Hiding stars with fireworks: Location privacy through camouflage. In: Proc. 15th ACM Annual International Conference on Mobile Computing and Networking (2009)Google Scholar
  11. 11.
    Talukder, N., Ahamed, S.I.: Preventing multi-query attack in location-based services. In: Proc. 3rd ACM Conference on Wireless Network Security (2010)Google Scholar
  12. 12.
    Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.L.: Private queries in location based services: Anonymizers are not necessary. In: Proc. ACM SIGMOD International Conference on Management of Data (2008)Google Scholar
  13. 13.
    Chang, W., Wu, J., Tan, C.C.: Enhancing mobile social network privacy. In: Proc. IEEE Global Communications Conference (2011)Google Scholar
  14. 14.
    Mascetti, S., Bettini, C., Freni, D., Wang, X.S., Jajodia, S.: Privacy-aware proximity based services. In: Proc. 10th IEEE International Conference on Mobile Data Management: Systems, Services and Middleware (2009)Google Scholar
  15. 15.
    Šikšnys, L., Thomsen, J.R., Šaltenis, S., Yiu, M.L.: Private and flexible proximity detection in mobile social networks. In: Proc. 11th IEEE International Conference on Mobile Data Management (2010)Google Scholar
  16. 16.
    Lin, Z., Kune, D.F., Hoppe, N.: Efficient private proximity testing with gsm location sketches. In: Proc. 32nd International Cryptology Conference (2012)Google Scholar
  17. 17.
    Broder, A.Z., Glassman, S.C., Manasse, M.S., Zweig, G.: Syntactic clustering of the web. Computer Networks and ISDN Systems 29(8-13), 1157–1166 (1997)CrossRefGoogle Scholar
  18. 18.
    Wong, W.K., Cheung, D.W., Kao, B., Mamoulis, N.: Secure knn computation on encrypted databases. In: Proc. 35th ACM SIGMOD International Conference on Management of Data (2009)Google Scholar
  19. 19.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set Intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT Press (1999)Google Scholar
  21. 21.
    Franklin, J., McCoy, D., Tabriz, P., Neagoe, V., Randwyk, J.V., Sicker, D.: Passive data link layer 802.11 wireless device driver fingerprinting. In: Proc. 15th USENIX Security Symposium (2006)Google Scholar
  22. 22.
    Mitzenmacher, M.: Compressed bloom filters. IEEE/ACM Transactions on Networking (TON) 10(5), 604–612 (2002)CrossRefGoogle Scholar
  23. 23.
    Lint, J.H.V.: Introduction to Coding Theory, vol. 86. Springer (1999)Google Scholar
  24. 24.
    Reyzin, L.: Entropy loss is maximal for uniform inputs. Technical report, Boston University Computer Science Department (2007)Google Scholar
  25. 25.
    Shrikhande, K.V., White, I.M., Rudee Wonglumsom, D., Gemelos, S.M., Rogge, M.S., Fukashiro, Y., Avenarius, M., Kazovsky, L.G.: Hornet: A packet-over-wdm multiple access metropolitan area ring network. Journal on Selected Areas in Communications 18(10), 2004–2016 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yao Zheng
    • 1
  • Ming Li
    • 2
  • Wenjing Lou
    • 1
  • Y. Thomas Hou
    • 1
  1. 1.Virginia Polytechnic Institute and State UniversityUSA
  2. 2.Utah State UniversityUSA

Personalised recommendations