Formal Analysis of Privacy in an eHealth Protocol

  • Naipeng Dong
  • Hugo Jonker
  • Jun Pang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7459)


Given the nature of health data, privacy of eHealth systems is of prime importance. An eHealth system must enforce that users remain private, even if they are bribed or coerced to reveal themselves or others. Consider e.g. a pharmaceutical company that bribes a pharmacist to reveal information which breaks a doctor’s privacy. In this paper, we identify and formalise several new but important privacy notions on enforcing doctor privacy. Then we analyse privacy of a complicated and practical eHealth protocol. Our analysis shows to what extent these properties as well as properties such as anonymity and untraceability are satisfied by the protocol. Finally, we address the found ambiguities resulting in privacy flaws, and propose suggestions for fixing them.


Electronic Vote Anonymous Authentication Privacy Property Direct Anonymous Attestation eHealth System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reid, J., Cheong, I., Henricksen, M., Smith, J.: A Novel Use of rBAC to Protect Privacy in Distributed Health Care Information Systems. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 403–415. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Currim, F., Jung, E., Xiao, X., Jo, I.: Privacy policy enforcement for health information data access. In: Proc. 1st ACM Workshop on Medical-grade Wireless Networks, pp. 39–44. ACM (2009)Google Scholar
  3. 3.
    Dolev, D., Yao, A.C.C.: On the security of public key protocols. IEEE Transactions on Information Theory 29(2), 198–207 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections (extended abstract). In: Proc. 26th Symposium on Theory of Computing, pp. 544–553. ACM (1994)Google Scholar
  5. 5.
    Lee, B., Kim, K.: Receipt-free electronic voting through collaboration of voter and honest verifier. In: Proc. Japan-Korea Joint Workshop on Information Security and Cryptology, pp. 101–108 (2000)Google Scholar
  6. 6.
    Hirt, M., Sako, K.: Efficient Receipt-Free Voting Based on Homomorphic Encryption. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 539–556. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Lee, B., Kim, K.: Receipt-Free Electronic Voting with a Tamper-Resistant Randomizer. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS, vol. 2513, pp. 389–406. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Matyáš, V.: Protecting doctors’ identity in drug prescription analysis. Health Informatics Journal (3-4), 205–209 (1998)Google Scholar
  9. 9.
    De Decker, B., Layouni, M., Vangheluwe, H., Verslype, K.: A Privacy-Preserving eHealth Protocol Compliant with the Belgian Healthcare System. In: Mjølsnes, S.F., Mauw, S., Katsikas, S.K. (eds.) EuroPKI 2008. LNCS, vol. 5057, pp. 118–133. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Dong, N., Jonker, H.L., Pang, J.: Challenges in eHealth: From Enabling to Enforcing Privacy. In: Liu, Z., Wassyng, A. (eds.) FHIES 2011. LNCS, vol. 7151, pp. 195–206. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Dong, N., Jonker, H.L., Pang, J.: Formal analysis of an eHealth protocol. Technical report, University of Luxembourg (2012) Report and ProVerif code are available at,
  12. 12.
    Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: Proc. 28th ACM Symposium on Principles of Programming Languages, pp. 104–115. ACM (2001)Google Scholar
  13. 13.
    Schneider, S., Sidiropoulos, A.: CSP and Anonymity. In: Martella, G., Kurth, H., Montolivo, E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 198–218. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  14. 14.
    van Deursen, T., Mauw, S., Radomirović, S.: Untraceability of RFID Protocols. In: Onieva, J.A., Sauveron, D., Chaumette, S., Gollmann, D., Markantonakis, K. (eds.) WISTP 2008. LNCS, vol. 5019, pp. 1–15. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Backes, M., Hriţcu, C., Maffei, M.: Automated verification of remote electronic voting protocols in the applied pi-calculus. In: Proc. 21st IEEE Computer Security Foundations Symposium, pp. 195–209. IEEE CS (2008)Google Scholar
  16. 16.
    Küsters, R., Truderung, T.: An epistemic approach to coercion-resistance for electronic voting protocols. In: Proc. 30th IEEE Symposium on Security and Privacy, pp. 251–266. IEEE CS (2009)Google Scholar
  17. 17.
    Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and anonymity using the applied pi calculus. In: Proc. 23rd IEEE Computer Security Foundations Symposium, pp. 107–121. IEEE CS (2010)Google Scholar
  18. 18.
    Küsters, R., Truderung, T., Vogt, A.: A game-based definition of coercion-resistance and its applications. In: Proc. 23rd IEEE Computer Security Foundations Symposium, pp. 122–136. IEEE CS (2010)Google Scholar
  19. 19.
    Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic voting protocols. Journal of Computer Security 17(4), 435–487 (2009)Google Scholar
  20. 20.
    Jonker, H.L., Mauw, S., Pang, J.: A formal framework for quantifying voter-controlled privacy. Journal of Algorithms in Cognition, Informatics and Logic 64(2-3), 89–105 (2009)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Dong, N., Jonker, H.L., Pang, J.: Analysis of a Receipt-Free Auction Protocol in the Applied Pi Calculus. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 223–238. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied pi-calculus and automated verification of the direct anonymous attestation protocol. In: Proc. IEEE Symposium on Security and Privacy, pp. 202–215. IEEE CS (2008)Google Scholar
  23. 23.
    Li, X., Zhang, Y., Deng, Y.: Verifying Anonymous Credential Systems in Applied Pi Calculus. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 209–225. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Brands, S.A.: Rethinking Public Key Infrastructures and Digital Certificates: Building in Privacy. MIT Press (2000)Google Scholar
  25. 25.
    Delaune, S., Ryan, M., Smyth, B.: Automatic Verification of Privacy Properties in the Applied Pi-Calculus. In: Proc. 2nd Joint iTrust and PST Conferences on Privacy, Trust Management and Security. IFIP Conference Proceedings, vol. 263, pp. 263–278. Springer (2008)Google Scholar
  26. 26.
    Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In: Proc. 14th IEEE Computer Security Foundations Workshop, pp. 82–96. IEEE CS (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Naipeng Dong
    • 1
  • Hugo Jonker
    • 1
  • Jun Pang
    • 1
  1. 1.Faculty of Sciences, Technology and CommunicationUniversity of LuxembourgLuxembourg

Personalised recommendations