Advertisement

PITAS: Pirate and Terrorist Aversion System

  • Boris Culik
  • Thomas Lehmann
  • Christoph Zebermann
Part of the Communications in Computer and Information Science book series (CCIS, volume 318)

Abstract

The Pirate and Terrorist Aversion System PITAS is a joint R&D project led by Raytheon Anschütz, Kiel. It aims at improving the safety on merchant and leisure vessels as well as on offshore facilities. PITAS connects to existing infrastructure and consists of a variety of modules. The system is flexible and can be installed permanently, or temporarily from a mobile container. Key elements are:
  • knowledge data base tapping various communication networks

  • data analysis providing threat scenarios and routing options

  • systems design integrating sensors and effectors, alarms and reactions

  • novel optical sensors and repellents

  • novel sonar sensor array for diver detection

  • novel close-range RADAR

  • track management based on radar and sonar data

  • situation-specific reactions, alarms and communications

  • automated pan and tilt platform for effectors

  • safety and security concepts

  • integrated and ergonomic human machine interface.

Keywords

Tilt Head Human Machine Interface Track Management Security Concept Threat Scenario 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bundespolizei See: Pirateriebericht der Bundespolizei See 4. Quartal 2011 / Jahresbericht 2011. Bundespolizei See, Sachbereich 12, Polizeiliche Auswertung und Analyse (PAA), Wieksbergstr. 54/0, 23730 Neustadt in Holstein (2012)Google Scholar
  2. 2.
    ICC 2012: International Chamber of Commerce, Piracy news and figures (2012), http://www.icc-ccs.org/piracy-reporting-centre/piracynewsafigures
  3. 3.
    Wallrabenstein, T.: Rechtliche Rahmenbedingungen für die Pirateriebekämpfung. Verband Deutscher Reeder. Kolloquium Seefahrt heute- zwischen Freiheit und Geiselhaft FH Flensburg (March 22, 2012)Google Scholar
  4. 4.
    Jopp, H.-D., Kaestner, R.: Eine globale Übersichtsanalyse von möglicher politisch oder ökonomisch motivierter maritimer Gewalt in den nächsten 20 Jahren. PiraT Arbeitspapier zur Maritimen Sicherheit Nr. 15, Hamburg (2012)Google Scholar
  5. 5.
    Engerer, H., Gössler, M.: Maritimer Terrorismus und Piraterie aus Sicht der deutschen Versicherungswirtschaft – Ergebnisse einer Befragung deutscher Transportversicherer. PiraT Arbeitspapier zur Maritimen Sicherheit Nr. 12, Hamburg (2011)Google Scholar
  6. 6.
    Engerer, H., Gössler, M.: Piraterie und maritimer Terrorismus aus Sicht deutscher Reeder – Ergebnisse einer Befragung. PiraT Arbeitspapier zur Maritimen Sicherheit Nr. 11, Hamburg (2011)Google Scholar
  7. 7.
    Van Hage, W.R., Malaisé, V., de Vries, G., Schreiber, G., van Someren, M.: Combining ship trajectories and semantics with the simple event model (SEM). In: Proceedings of the 1st ACM International Workshop on Events in Multimedia, pp. 73–80. ACM (2009)Google Scholar
  8. 8.
    Güting, R.H., Schneider, M.: Moving Object Databases. Morgan Kaufmann, San Francisco (2005)Google Scholar
  9. 9.
    Laube, P., van Kreveld, M., Imfeld, S.: Finding REMO - detecting relative motion patterns in geospatial lifelines. In: Fisher, P.F. (ed.) Proceedings of the 11th International Symposium on Spatial Data Handling Developments in Spatial Data Handling, pp. 201–214. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Böhm, M.: Integration von Informationen zu Piratenangriffen aus heterogenen Internetquellen mit einer Text-Mining-Komponente. Bachelor Thesis, Christian-Albrechts-University, Kiel (2011)Google Scholar
  11. 11.
    Skolnik, M.: Radar Handbook. McGraw Hill, Inc. (1990)Google Scholar
  12. 12.
    Daun, M., Ehlers, F.: Tracking Algorithms for Multistatic Sonar Systems. EURASIP Journal on Advances in Signal Processing 35, 1–28 (2010)Google Scholar
  13. 13.
    Konstantinova, P., Udvarev, A., Semerdjiev, T.: A Study of a Target Tracking Algorithm Using Global Nearest Neighbor Approach. In: Proceedings of the 4th International Conference on Computer Systems and Technologies: e-Learning, CompSysTech 2003, New York, USA, pp. 290–295 (2003)Google Scholar
  14. 14.
    Wilkens, K., Nguyen, V.D., Heute, U.: Adaptive Clutter Density in Multi-Hypothesis Tracking. In: Proc. IEEE ISIF GI Workshop Sensor Data Fusion, Berlin, Germany (2011)Google Scholar
  15. 15.
    Nguyen, V.D.: Small-Target Radar Detection and Tracking Within the PITAS Hard- and Software Environment. In: Aschenbruck, N., et al. (eds.) Future Security 2012. CCIS, vol. 318, pp. 335–346. Springer, Heidelberg (2012)Google Scholar
  16. 16.
    Harding, G., Harding, P., Wilkins, A.: Wind turbines, flicker, and photosensitive epilepsy: Characterizing the flashing that precipitate seizures and optimizing guidelines to prevent them. Epilepsia 49(6), 1095–1098 (2008)CrossRefGoogle Scholar
  17. 17.
    DIN EN 61508-0: Funktionale Sicherheit sicherheitsbezogener elektrischer/elektronischer/programmierbarer elektronischer Systeme; Teil 0: Funktionale Sicherheit und die IEC 61508Google Scholar
  18. 18.
    Van Atta, L.C.: Electromagnetic Reflector, U.S Patent No. 2,908,002 (October 6, 1959)Google Scholar
  19. 19.
    Belfi, C., Rothenberg, C., Schwartzman, L., Tilley, R.E., Willis, A.: A satellite data transmission antenna. Transactions on IEEE Antennas and Propagation 2, 200–206 (1964)CrossRefGoogle Scholar
  20. 20.
    Gupta, S.: Retro-directive noise correlation radar with extremely low acquisition time. In: IEEE Microwave Symposium, vol. 1, pp. 599–602 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Boris Culik
    • 1
  • Thomas Lehmann
    • 2
  • Christoph Zebermann
    • 2
  1. 1.F3: Forschung . Fakten . FantasieHeikendorfGermany
  2. 2.Raytheon AnschützKielGermany

Personalised recommendations