Millimeter-Wave Monolithic Integrated Circuits and Modules for Safety and Security Applications

  • Michael Schlechtweg
  • Axel Tessmann
  • Axel Hülsmann
  • Ingmar Kallfass
  • Arnulf Leuther
  • Rolf Aidam
  • Christian Zech
  • Ulrich J. Lewark
  • Hermann Massler
  • Markus Riessle
  • Martin Zink
  • Josef Rosenzweig
  • Oliver Ambacher
Part of the Communications in Computer and Information Science book series (CCIS, volume 318)

Abstract

Metamorphic high electron mobility transistor (mHEMT) technologies with 100, 50, and 35 nm gate lengths have been developed at Fraunhofer IAF for operation in the millimeter-wave frequency range up to 600 GHz. Based on these technologies, a variety of multifunctional millimeter-wave and submillimeter-wave monolithic integrated circuits (MMICs and S MMICs) has been realized. To demonstrate the potential of these technologies, this paper presents some examples of S-MMICs developed for use in next generation systems for safety and security applications: a 460 GHz amplifier and a 300 GHz heterodyne receiver. Furthermore, a complete 94 GHz imaging system for materials testing and concealed object detection is presented.

Keywords

millimeter-wave monolithic integrated circuit (MMIC) metamorphic high electron mobility transistor (mHEMT) amplifier receiver active imaging radar materials testing weapon detection continuous wave radar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Appleby, R., Wallace, H.B.: Standoff Detection of Weapons and Contraband in the 100 GHz to 1 THz Region. IEEE Trans. Antennas Propag. 55, 2944–2956 (2007)CrossRefGoogle Scholar
  3. 3.
    Cooper, K.B., Dengler, R.J., Llombart, N., Thomas, B., Chattopadhyay, G., Siegel, P.H.: THz Imaging Radar for Standoff Personnel Screening. IEEE Trans. Terahertz Sci. Technol. 1, 169–182 (2011)CrossRefGoogle Scholar
  4. 4.
    Ahmed, S.S., Schiessl, A., Schmidt, L.-P.: A Novel Fully Electronic Active Real-Time Imager Based on a Planar Multistatic Sparse Array. IEEE Trans. Microw. Theory Tech. 59, 3567–3576 (2011)CrossRefGoogle Scholar
  5. 5.
    Friedrich, F., von Spiegel, W., Bauer, M., Meng, F., Thomson, M.D., Boppel, S., Lisauskas, A., Hils, B., Krozer, V., Keil, A., Löffler, T., Henneberger, R., Huhn, A.K., Spickermann, G., Bolivar, P.H., Roskos, H.G.: THz Active Imaging Systems With Real-Time Capabilities. IEEE Trans. Terahertz Sci. Technol. 1, 183–200 (2011)CrossRefGoogle Scholar
  6. 6.
    Hantscher, S., Schlenther, B., Hägelen, M., Lang, S.A., Essen, H., Tessmann, A., Hülsmann, A., Leuther, A., Schlechtweg, M.: Security Pre-screening of Moving Persons Using a Rotating Multichannel W-Band Radar. IEEE Trans. Microw. Theory Tech. 60, 870–880 (2012)CrossRefGoogle Scholar
  7. 7.
    Leuther, A., Tessmann, A., Kallfass, I., Lösch, R., Seelmann-Eggebert, M., Wadefalk, N., Schäfer, F., Gallego Puyol, J.D., Schlechtweg, M., Mikulla, M., Ambacher, O.: Metamorphic HEMT Technology for Low-Noise Applications. In: Proc 21st Int. Conf. Indium Phospide Related Mater., pp. 188–191 (2009)Google Scholar
  8. 8.
    Leuther, A., Tessmann, A., Kallfass, I., Massler, H., Loesch, R., Schlechtweg, M., Mikulla, M., Ambacher, A.: Metamorphic HEMT Technology for Submillimeter-Wave MMIC Applications. In: Proc. 22nd Int. Conf. Indium Phospide Related Mater., pp. 425-430 (2010) Google Scholar
  9. 9.
    Tessmann, A., Leuther, A., Hurm, V., Kallfass, I., Massler, H., Kuri, M., Riessle, M., Zink, M., Lösch, R., Seelmann-Eggebert, M., Schlechtweg, M., Ambacher, O.: Metamorphic HEMT MMICs and Modules Operating Between 300 and 500 GHz. IEEE J. Solid-State Circuits 46, 2193–2202 (2011)CrossRefGoogle Scholar
  10. 10.
    Tessmann, A., Leuther, A., Loesch, R., Seelmann-Eggebert, M., Massler, H.: A Metamorphic HEMT S-MMIC Amplifier With 16.1 dB Gain at 460 GHz. In: IEEE Compound Semicond. IC Symp. Dig., pp. 245–248 (2010)Google Scholar
  11. 11.
    Tessmann, A., Massler, H., Lewark, U.J., Wagner, S., Kallfass, I., Leuther, A.: Fully integrated 300 GHz Receiver S-MMICs in 50 nm Metamorphic HEMT Technology. In: IEEE Compound Semicond. IC Symp. Dig., pp. 219–222 (2011)Google Scholar
  12. 12.
    Zech, C., Hülsmann, A., Kallfass, I., Tessmann, A., Zink, M., Schlechtweg, M., Leuther, A., Ambacher, O.: Active Millimeter-Wave Imaging System for Material Analysis and Object Detection. In: Krapels, K.A., et al. (eds.) Proc. SPIE Millimetre Wave and Terahertz Sensors and Technology IV, Bellingham, WA, vol. 8188, pp. 81880D-1–81880D-9 (2011)Google Scholar
  13. 13.
    Tessmann, A., Kudszus, S., Feltgen, T., Riessle, M., Sklarczyk, C., Haydl, W.J.: Compact Single-Chip W-Band FMCW Radar Modules for Commercial High-Resolution Sensor Applications. IEEE Trans. Microw. Theory Tech. 50, 2995–3001 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michael Schlechtweg
    • 1
  • Axel Tessmann
    • 1
  • Axel Hülsmann
    • 1
  • Ingmar Kallfass
    • 1
    • 2
  • Arnulf Leuther
    • 1
  • Rolf Aidam
    • 1
  • Christian Zech
    • 1
  • Ulrich J. Lewark
    • 2
  • Hermann Massler
    • 1
  • Markus Riessle
    • 1
  • Martin Zink
    • 1
  • Josef Rosenzweig
    • 1
  • Oliver Ambacher
    • 1
  1. 1.Fraunhofer Institute for Applied Solid State Physics (IAF)FreiburgGermany
  2. 2.Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations