Datalog and Its Extensions for Semantic Web Databases

  • Georg Gottlob
  • Giorgio Orsi
  • Andreas Pieris
  • Mantas Šimkus
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7487)


Since the early 70s, data management played a central role in organizations and represented a challenging area of research. A number of languages have been proposed to model, query, and manipulate data, as well as for expressing very general classes of integrity constraints, inference procedures, and ontological knowledge. Such languages are nowadays crucial for many applications such as semantic data publishing and integration, decision support, and knowledge management. In this tutorial we first introduce Datalog, a powerful rule-based language originally intended for expressing complex queries over relational data, and that today is at the basis of languages for the specification of optimization and constraint satisfaction problems as well as of ontological constraints in data and knowledge bases. We then discuss the limitations of Datalog for the semantic web, in particular for ontological modeling and reasoning, and we present several extensions that allow to capture some of the ontology languages of the OWL family, the standard language for semantic data modeling on the semantic web.


Propositional Atom Equality Rule Conjunctive Query Ontology Language Query Answering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)Google Scholar
  2. 2.
    Andréka, H., van Benthem, J., Németi, I.: Modal languages and bounded fragments of predicate logic. J. of Philosophical Logic 27(3), 217–274 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Andréka, H., Németi, I.: The generalised completeness of Horn predicate logics as programming language. Acta Cybernetica 4(1), 3–10 (1978)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: Proc. of IJCAI, pp. 364–369 (2005)Google Scholar
  5. 5.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press (2003)Google Scholar
  6. 6.
    Baget, J.F., Leclère, M., Mugnier, M.L.: Walking the decidability line for rules with existential variables. In: Proc. of KR (2010)Google Scholar
  7. 7.
    Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Proc. of ICALP, pp. 73–85 (1981)Google Scholar
  8. 8.
    Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under expressive relational constraints. In: Proc. of KR, pp. 70–80 (2008)Google Scholar
  9. 9.
    Calì, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable query answering over ontologies. In: Proc. of PODS, pp. 77–86. ACM Press (2009)Google Scholar
  10. 10.
    Calì, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: A family of logical knowledge representation and query languages for new applications. In: Proc. of LICS, pp. 228–242 (2010)Google Scholar
  11. 11.
    Calì, A., Gottlob, G., Pieris, A.: Advanced processing for ontological queries. PVLDB 3(1), 554–565 (2010)Google Scholar
  12. 12.
    Calì, A., Gottlob, G., Pieris, A.: Query answering under non-guarded rules in Datalog±. In: Proc. of RR, pp. 175–190 (2010)Google Scholar
  13. 13.
    Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: The DL-Lite family. Journal of Automated Reasoning 39(3), 385–429 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer (1990)Google Scholar
  15. 15.
    Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In: Proc. of STOC, pp. 77–90 (1977)Google Scholar
  16. 16.
    Chandra, A.K., Vardi, M.Y.: The implication problem for functional and inclusion dependencies. SIAM Journal of Computing 14(3), 671–677 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Cosmadakis, S.S., Gaifman, H., Kanellakis, P.C., Vardi, M.Y.: Decidable optimization problems for database logic programs (preliminary report). In: Proc. of STOC, pp. 477–490 (1988)Google Scholar
  18. 18.
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Computing Surveys 33(3), 374–425 (2001)CrossRefGoogle Scholar
  19. 19.
    Deutsch, A., Nash, A., Remmel, J.B.: The chase revisisted. In: Proc. of PODS, pp. 149–158 (2008)Google Scholar
  20. 20.
    Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Trans. on Database Systems 22(3), 364–418 (1997)CrossRefGoogle Scholar
  21. 21.
    Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A Deductive System for Non-Monotonic Reasoning. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, Springer, Heidelberg (1997)Google Scholar
  22. 22.
    Eiter, T., Simkus, M.: FDNC: Decidable nonmonotonic disjunctive logic programs with function symbols. ACM Transactions on Computational Logic 11(2) (2010)Google Scholar
  23. 23.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gaifman, H., Mairson, H.G., Sagiv, Y., Vardi, M.Y.: Undecidable optimization problems for database logic programs. J. of the ACM 40(3), 683–713Google Scholar
  25. 25.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: The Potsdam answer set solving collection. AICOM 24(2), 105–124 (2011)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Grädel, E.: On the restraining power of guards. J. Symb. Log. 64(4), 1719–1742 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.): OWL 2 Web Ontology Language: Primer. W3C Recommendation (October 27, 2009),
  28. 28.
    Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under functional and inclusion dependencies. J. of Computer and System Sciences 28(1), 167–189 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Krötzsch, M., Rudolph, S.: Extending decidable existential rules by joining acyclicity and guardedness. In: Proc. of IJCAI, pp. 963–968 (2011)Google Scholar
  30. 30.
    Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer (1993)Google Scholar
  31. 31.
    Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. ACM Trans. on Database Systems 4(4), 455–469 (1979)CrossRefGoogle Scholar
  32. 32.
    Marnette, B.: Generalized schema-mappings: from termination to tractability. In: Proc. of PODS, pp. 13–22 (2009)Google Scholar
  33. 33.
    OWL Working Group, W. OWL 2 Web Ontology Language: Document Overview. W3C Recommendation (October 27, 2009),
  34. 34.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)Google Scholar
  35. 35.
    Patel-Schneider, P.F., Horrocks, I.: A comparison of two modelling paradigms in the semantic web. J. Web Semantics 5(4), 240–250 (2007)CrossRefGoogle Scholar
  36. 36.
    Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. Journal on Data Semantics 10, 133–173 (2008)zbMATHGoogle Scholar
  37. 37.
    Vardi, M.Y.: The complexity of relational query languages (extended abstract). In: Proc. of STOC, pp. 137–146 (1982)Google Scholar
  38. 38.
    Vardi, M.Y.: Decidability and undecidability results for boundedness of linear recursive queries. In: Proc. of PODS, pp. 341–351 (1988)Google Scholar
  39. 39.
    Vardi, M.Y.: Why is modal logic so robustly decidable? In: Descriptive Complexity and Finite Models, pp. 149–184 (1996)Google Scholar
  40. 40.
    Vardi, M.Y.: On the complexity of bounded-variable queries. In: Proc. of PODS, pp. 266–276. ACM Press (May 1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Georg Gottlob
    • 1
    • 3
    • 4
  • Giorgio Orsi
    • 1
    • 4
  • Andreas Pieris
    • 1
  • Mantas Šimkus
    • 2
  1. 1.Department of Computer ScienceUniversity of OxfordUK
  2. 2.Institute of Information SystemsVienna University of TechnologyAustria
  3. 3.Oxford-Man Institute of Quantitative FinanceUniversity of OxfordUK
  4. 4.Institute for the Future of ComputingOxford Martin SchoolUK

Personalised recommendations