Advertisement

On the Outcomes of Multiparty Persuasion

  • Elise Bonzon
  • Nicolas Maudet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7543)

Abstract

In recent years, several bilateral protocols regulating the exchange of arguments between agents have been proposed. When dealing with persuasion, the objective is to arbitrate among conflicting viewpoints. Often, these debates are not entirely predetermined from the initial situation, which means that agents have a chance to influence the outcome in a way that fits their individual preferences. This paper introduces a simple and intuitive protocol for multiparty argumentation, in which several (more than two) agents are equipped with argumentation systems. We further assume that they focus on a (unique) argument (or issue) —thus making the debate two-sided— but do not coordinate. We study what outcomes can (or will) be reached if agents follow this protocol. We investigate in particular under which conditions the debate is pre-determined or not, and whether the outcome coincides with the result obtained by merging the argumentation systems.

Keywords

Argumentation persuasion protocols multiagent systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bench-Capon, T.: Value-based argumentation frameworks. In: Proc. of the 9th Int. Workshop on Non-Monotonic Reasoning (NMR 2002), pp. 443–454 (2002)Google Scholar
  2. 2.
    Bonzon, E., Maudet, N.: On the outcomes of multiparty persuasion. In: Proc. of AAMAS 2011, pp. 47–54 (2011)Google Scholar
  3. 3.
    Caminada, M., Pigozzi, G.: On judgment aggregation in abstract argumentation. Journal of Autonomous Agents and Multiagent Systems 22, 64–102 (2011)CrossRefGoogle Scholar
  4. 4.
    Cartwright, D., Atkinson, K.: Using computational argumentation to support e-participation. IEEE Intelligent Systems 24(5), 42–52 (2009)CrossRefGoogle Scholar
  5. 5.
    Cayrol, C., Lagasquie-Schiex, M.-C.: Graduality in argumentation. J. Artif. Intell. Res. (JAIR) 23, 245–297 (2005)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Coste-Marquis, S., Devred, C., Konieczny, S., Lagasquie-Schiex, M.-C., Marquis, P.: On the Merging of Dung’s Argumentation Systems. Artificial Intelligence 171, 740–753 (2007)MathSciNetGoogle Scholar
  7. 7.
    Dignum, F.P.M., Vreeswijk, G.A.W.: Towards a Testbed for Multi-party Dialogues. In: Dignum, F.P.M. (ed.) ACL 2003. LNCS (LNAI), vol. 2922, pp. 212–230. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-persons games. Artificial Intelligence 77, 321–357 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Dunne, P., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Inconsistency tolerance in weighted argument systems. In: Proc. of the 8th Int. Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009), pp. 851–858 (2009)Google Scholar
  10. 10.
    Leite, J., Martins, J.: Social abstract argumentation. In: Proc. of IJCAI 2011, pp. 2287–2292 (2011)Google Scholar
  11. 11.
    Loui, R.: Process and policy: Resource-bounded nondemonstrative reasoning. Computational Intelligence 14(1), 1–38 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Parsons, S., Wooldridge, M., Amgoud, L.: Properties and complexity of some formal inter-agent dialogues. Journal of Logic and Computation 13(3), 347–376 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Pham, D.H., Governatori, G., Thakur, S.: Extended defeasible reasoning for common goals in n-person argumentation games. Journal of Universal Computer Science 15(13), 2653–2675 (2009)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Prakken, H.: Coherence and flexibility in dialogue games for argumentation. Journal of Logic and Computation 15, 347–376 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Prakken, H.: Formal systems for persuasion dialogue. Knowledge Engineering Review 15, 1009–1040 (2005)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Rahwan, I., Larson, K.: Pareto optimality in abstract argumentation. In: Proc. of the 23rd Conference on Artificial Intelligence (AAAI 2008), pp. 150–155 (2008)Google Scholar
  17. 17.
    Rahwan, I., Larson, K.: Argumentation in Artificial Intelligence. In: Argumentation and Game Theory, pp. 321–339. Springer (2009)Google Scholar
  18. 18.
    Rahwan, I., Tohmé, F.A.: Collective argument evaluation as judgement aggregation. In: Proc. of the 10th Int. Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), pp. 417–424 (2010)Google Scholar
  19. 19.
    Tohmé, F.A., Bodanza, G.A., Simari, G.R.: Aggregation of Attack Relations: A Social-Choice Theoretical Analysis of Defeasibility Criteria. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS 2008. LNCS, vol. 4932, pp. 8–23. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Toni, F., Torroni, P.: Bottom-Up Argumentation. In: Modgil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS, vol. 7132, pp. 249–262. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Wardeh, M., Bench-Capon, T., Coenen, F.: Multi-Party Argument from Experience. In: McBurney, P., Rahwan, I., Parsons, S., Maudet, N. (eds.) ArgMAS 2009. LNCS, vol. 6057, pp. 216–235. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Elise Bonzon
    • 1
  • Nicolas Maudet
    • 2
  1. 1.LIPADEUniversité Paris DescartesFrance
  2. 2.LIP6Université Pierre et Marie CurieFrance

Personalised recommendations