Advertisement

Detection of HF First-Order Sea Clutter and Its Splitting Peaks with Image Feature: Results in Strong Current Shear Environment

  • Yang Li
  • Zhenyuan Ji
  • Junhao Xie
  • Wenyan Tang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7517)

Abstract

Strong current shear environment always results in the twisty and splitted sea clutter along the range dimension in the range-Doppler spectral map. A sea clutter detection method with image feature is proposed. With 2-D image features in range-Doppler spectrum, the trend of first-order sea echoes is extracted as indicative information by a multi-scale filter. Detection rules for both single and splitting first-order sea echoes are given based on the characteristic knowledge combining the indicative information with the global characteristics such as amplitude, symmetry, continuity, etc. Compared with the classical algorithms, the proposed method can detect and locate the first-order sea echo in the HF band more accurately especially in the environment with targets/clutters smearing. Experiments with real data in strong current shear environment verify the validity of the algorithm.

Keywords

sea state remote sensing first-order sea clutter image feature Bragg peak splitting high frequency radar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wyatt, L.R., Green, J.J., Middleditch, A., et al.: Operational Wave, Current, and Wind Measurements With the Pisces HF Radar. IEEE Journal of Oceanic Engineering 31(4), 819–834 (2006)CrossRefGoogle Scholar
  2. 2.
    Sevgi, L., Ponsford, A., Chan, H.C.: An Integrated Maritime Surveillance System Based on High-Frequency Surface-Wave Radars, Part 1: Theoretical Background and Numerical Simulations. IEEE Antennas and Propagation Magazine 43(4), 28–43 (2001)CrossRefGoogle Scholar
  3. 3.
    Hickey, K.J., Gill, E.W., Helbig, J.A., et al.: Measurement of ocean surface currents using a long-range, high-frequency ground wave radar. IEEE Journal of Oceanic Engineering 19(4), 549–554 (1994)CrossRefGoogle Scholar
  4. 4.
    Barrick, D.E.: Accuracy of parameter extraction from sample-averaged sea-echo Doppler spectra. IEEE Transactions on Antennas and Propagation 28(1), 1–11 (1980)CrossRefGoogle Scholar
  5. 5.
    Shang, S., Zhang, N., Li, Y.: Research of Ionospheric Clutter Statistical Properties in HFSWR. Chinese Journal of Radio Science 26(3), 521–527 (2011)MathSciNetGoogle Scholar
  6. 6.
    Wyatt, L.R., Green, J.J., Middleditch, A.: Wave, Current and Wind Monitoring using HF Radar. In: Proc. of the IEEE/OES Eighth Working Conference on Current Measurement Technology, pp. 53–57. IEEE Press, New York (2005)CrossRefGoogle Scholar
  7. 7.
    Khan, R., Power, D., Walsh, J.: Ocean Clutter Suppression for An HF Ground Wave Radar. In: IEEE 1997 Canadian Conference on Electrical and Computer Engineering, pp. 512–515. IEEE Press, New York (1997)Google Scholar
  8. 8.
    Wang, J., Lynn, R.K.: Improvement of high frequency ocean surveillance radar using subspace methods based on sea clutter suppression. In: Sensor Array and Multichannel Signal Processing Workshop Proceedings, pp. 557–560. IEEE Press, New York (2002)CrossRefGoogle Scholar
  9. 9.
    Xing-Bin, G., Cheng-Ge, Z., Ye-Shu, Y.: Sea-Clutter-Canceling for HF Ground-Wave Shipborne OTH Radar. Dian Zi Xue Bao 28(3), 5–8 (2000)Google Scholar
  10. 10.
    Ji, Z., Meng, X., Zhou, H.: Analysis of Sea Clutters in HF Ground Wave Over-the-Horizon Radar. System Engineering and Electronics 22(5), 12–16 (2000)Google Scholar
  11. 11.
    Tong, J., Wen, B., Wang, S.: Ship Target Detection in Strong Sea Clutter Background. Journal of Wuhan University (Natural and Science Edition) 51(3), 370–374 (2005)Google Scholar
  12. 12.
    Qiang, Y.: Research of Detector in High Frequency Ground Wave Radar, Harbin Institute of Technology (August 2002)Google Scholar
  13. 13.
    Parkinson Murray, L.: Observations of the broadening and coherence of MF lower HF surface-radar ocean echoes. IEEE Journal of Oceanic Engineering 2(2), 347–363 (1997)CrossRefGoogle Scholar
  14. 14.
    Heron, M.L., Gill, E.W., Prytz, A.: An Investigation of Double-peaked HF Radar Spectra via A Convolution/De-convolution Algorithm. In: OCEANS 2008, pp. 1–5. IEEE Press, New York (2008)CrossRefGoogle Scholar
  15. 15.
    Crombie, D.D.: Doppler Spectrum of Sea Echo at 13. 56MHz. Nature 175, 681–682 (1955)CrossRefGoogle Scholar
  16. 16.
    Barrick, D.E., Headrick, J.M., Bogle, R.W., et al.: Sea Backscatter at HF: Interpretation and Utilization of the Echo. Proceedings of the IEEE 62(6), 673–680 (1974)CrossRefGoogle Scholar
  17. 17.
    Lindeberg, T.: Edge Detection and Ridge Detection with Automatic Scale Selection. International Journal of Computer Vision 30(2), 107–153 (1998)Google Scholar
  18. 18.
    Yujin, Z.: Image Engineering (II): Image Analysis, 2nd edn., pp. 369–376. Tsinghua University Press, Beijing (2005)Google Scholar
  19. 19.
    Yang, L., Ning, Z., Qiang, Y.: A Fast, Accurate Spectral Peak Location Estimator. Journal of Harbin Institute of Technology 40(S1), 160–163 (2008)Google Scholar
  20. 20.
    Yang, L., Ning, Z., Qiang, Y.: Characteristic-Knowledge-Aided Spectral Detection of High Frequency First-Order Sea Echo. Journal of Systems Engineering and Electronics 20(4), 718–725 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yang Li
    • 1
  • Zhenyuan Ji
    • 1
  • Junhao Xie
    • 1
  • Wenyan Tang
    • 2
  1. 1.Department of Electronic EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.Institute of Automatic Testing and ControlHarbin Institute of TechnologyHarbinChina

Personalised recommendations