Toward a Molecular Ion Qubit

  • J. Mur-PetitEmail author
  • J. Pérez-Ríos
  • J. Campos-Martínez
  • M. I. Hernández
  • S. Willitsch
  • J. J. García-Ripoll
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)


We discuss the application of a novel spectroscopy protocol to study the Zeeman structure of single molecular ions. From molecular structure calculations for \({}^{14}\mathrm{{N}}_{2}^{+}\) and \({}^{16}\mathrm{{O}}_{2}^{+}\) we deduce their Zeeman spectra and discuss their potential to be used as a resource to encode quantum information.


Hadamard Gate Magnetic Field Fluctuation Zeeman Shift Sympathetic Cool Quantum Information Processing Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by Spanish MICINN Projects FIS2009-10061, FIS2010-22064-C02-02 and CTQ2007-62898-BQU, CAM research consortium QUITEMAD S2009-ESP-1594, the Swiss National Science Foundation through the National Centre of Competence in Research “Quantum Science and Technology,” ESF COST Action IOTA (MP1001), a FP7 Marie Curie fellowship (IEF-2009-251913 MOLOPTLAT) (J. M-P.), and a JAE CSIC Fellowship (J. P.-R.).


  1. 1.
    Bressel, U, Borodin, A., Shen, J., Hansen, M., Ernsting, I., Schiller, S.: Addressing and manipulation of individual hyperfine states in cold trapped molecular ions and application to HD +  frequency metrology. E-print arXiv:1203.2153 (2012)Google Scholar
  2. 2.
    Brown, J.M., Carrington, A.: Rotational Spectroscopy of Diatomic Molecules. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  3. 3.
    Brown, J.M., Kaise, M., Kerr, C.M.L., Milton, D.J.: A determination of fundamental Zeeman parameters for the OH radical. Mol. Phys. 36, 553 (1978)ADSCrossRefGoogle Scholar
  4. 4.
    Coxon, J.A., Haley, M.P.: Rotational analysis of the \({A}^{2}{\Pi }_{u} \rightarrow {X}^{2}{\Pi }_{g}\) second negative band system of 16O2  + . J. Mol. Spectrosc. 108, 119 (1984)ADSCrossRefGoogle Scholar
  5. 5.
    García-Ripoll, J.J., Zoller, P., Cirac, J.I.: Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. Phys. Rev. Lett. 91, 157901 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    García-Ripoll, J.J., Zoller, P., Cirac, J.I.: Coherent control of trapped ions using off-resonant lasers. Phys. Rev. A 71, 062309 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Haeffner, H., Roos, C.F., Blatt, R.: Quantum computing with trapped ions. Phys. Rep. 469, 155 (2008)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Hume, D.B., Rosenband, T., Wineland, D.J.: High-fidelity adaptive qubit detection through repetitive quantum nondemolition measurements. Phys. Rev. Lett. 99, 120502 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Johanning, M., Braun, A., Timoney, N., Elman, V., Neuhauser, W., and Wunderlich, Chr.: Individual addressing of trapped ions and coupling of motional and spin states using rf radiation. Phys. Rev. Lett. 102, 073004 (2009)Google Scholar
  10. 10.
    Krems, R.V., Egorov, D., Helton, J.S., Maussang, K., Nguyen, S.V., Doyle, J.M.: Zeeman effect in CaF(2 Π 3 ∕ 2) J. Chem. Phys. 121, 11639 (2004)ADSGoogle Scholar
  11. 11.
    Leibfried, D., DeMarco, B., Meyer, V., Lucas, D., Barrett, M., Britton, J., Itano, W. M., Jelenković, B., Langer, C., Rosenband, T., Wineland, D.J.: Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Leo Meerts, W., Veseth, L., Leibfried, D., Blatt, R., Monroe, C., and Wineland, D.: The zeeman spectrum of the NO molecule. J. Molec. Spectros. 82, 202 (1980)CrossRefGoogle Scholar
  13. 13.
    Mintert, F., Wunderlich, C.: Ion-trap quantum logic using long-wavelength radiation. Phys. Rev. Lett. 87, 257904 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    Molhave, K., Drewsen, M.: Formation of translationally cold MgH +  and MgD +  molecules in an ion trap. Phys. Rev. A 62, 011401 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    Mur-Petit, J., García-Ripoll, J.J., Pérez-Ríos, J., Campos-Martínez, J., Hernández, M.I., Willitsch, S.: Temperature-independent quantum logic for molecular spectroscopy. Phys. Rev. A 85, 022308 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Mur-Petit, J., García-Ripoll, J.J., Pérez-Ríos, J., Campos-Martínez, J., Hernández, M.I., Willitsch, S.: Prospects for simple diatomic ions as Zeeman qubits. To be submittedGoogle Scholar
  17. 17.
    Nielsen, M., Chuang, I.: Quantum Information and Computation. Cambridge University Press, Cambridge (2011)Google Scholar
  18. 18.
    Ospelkaus, S., Ni, K.K., Wang, D., de Miranda, M.H.G., Neyenhuis, B., Quéméner, G., Julienne, P.S., Bohn, J.L., Jin, D.S., Ye, J.: Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science 327, 853 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Schiller, S., Korobov, V.: Tests of time independence of the electron and nuclear masses with ultracold molecules. Phys. Rev. A 71, 032505 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Schmidt, P.O., Rosenband, T., Langer, C., Itano, W.M., Bergquist, J.C., Wineland, D.J.: Spectroscopy using quantum logic. Science 309, 749 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    Schneider, T., Roth, B., Duncker, H., Ernsting, I., Schiller, S.: All-optical preparation of molecular ions in the rovibrational ground state. Nat. Phys. 6, 275 (2010)CrossRefGoogle Scholar
  22. 22.
    Shannon, C.M..: A symbolic analysis of relay and switching circuits Trans. Am. Inst. Elec. Eng. 52, 713–723 (1938)CrossRefGoogle Scholar
  23. 23.
    Staanum, P.F., Hojbjerre, K., Hansen, A.K., Drewsen, M.: Rotational laser cooling of vibrationally and translationally cold molecular ions. Nat. Phys. 6, 271 (2010)CrossRefGoogle Scholar
  24. 24.
    Tong, X., Wild, D., Willitsch, S.: Collisional and radiative effects in the state-selective preparation of translationally cold molecular ions in ion traps. Phys. Rev. A 83, 023415 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Tong, X., Winney, A.H., Willitsch, S.: Sympathetic cooling of molecular ions in selected rotational and vibrational states produced by threshold photoionization. Phys. Rev. Lett. 105, 143001 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Willitsch, S.: Coulomb-crystallized molecular ions in traps: methods, applications, prospects. Int. Rev. Phys. Chem. 31, 175–199 (2012)CrossRefGoogle Scholar
  27. 27.
    Willitsch, S., Bell, M.T., Gingell, A.D., Softley, T.P.: Chemical applications of laser- and sympathetically-cooled ions in ion traps. Phys. Chem. Chem. Phys. 10, 7200 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. Mur-Petit
    • 1
    Email author
  • J. Pérez-Ríos
    • 1
  • J. Campos-Martínez
    • 1
  • M. I. Hernández
    • 1
  • S. Willitsch
    • 2
  • J. J. García-Ripoll
    • 1
  1. 1.Instituto de Física Fundamental, IFF-CSICMadridSpain
  2. 2.Department of ChemistryUniversity of BaselBaselSwitzerland

Personalised recommendations