Advertisement

A Generalization of Stålmarck’s Method

  • Aditya Thakur
  • Thomas Reps
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7460)

Abstract

This paper gives an account of Stålmarck’s method for validity checking of propositional-logic formulas, and explains each of the key components in terms of concepts from the field of abstract interpretation. We then use these insights to present a framework for propositional-logic validity-checking algorithms that is parametrized by an abstract domain and operations on that domain. Stålmarck’s method is one instantiation of the framework; other instantiations lead to new decision procedures for propositional logic.

Keywords

Equivalence Relation Decision Procedure Propositional Logic Integrity Constraint Abstract Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Björk, M.: First order Stålmarck. J. Autom. Reasoning 42(1), 99–122 (2009)zbMATHCrossRefGoogle Scholar
  2. 2.
    Cook, B., Gonthier, G.: Using Stålmarck’s Algorithm to Prove Inequalities. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 330–344. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL (1977)Google Scholar
  4. 4.
    Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: POPL (1979)Google Scholar
  5. 5.
    D’Silva, V., Haller, L., Kroening, D.: Satisfiability Solvers Are Static Analyzers. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 317–333. Springer, Heidelberg (2012)Google Scholar
  6. 6.
    D’Silva, V., Haller, L., Kroening, D., Tautschnig, M.: Numeric Bounds Analysis with Conflict-Driven Learning. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 48–63. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Eén, N., Sjørensson, N.: The MiniSat solver (2006), minisat.se/MiniSat.html
  8. 8.
    Granger, P.: Improving the Results of Static Analyses Programs by Local Decreasing Iteration (Extended Abstract). In: Shyamasundar, R. (ed.) FSTTCS 1992. LNCS, vol. 652, pp. 68–79. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  9. 9.
    Harrison, J.: Stålmarck’s Algorithm as a HOL Derived Rule. In: von Wright, J., Grundy, J., Harrison, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 221–234. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  10. 10.
    Kunz, W., Pradhan, D.: Recursive learning: A new implication technique for efficient solutions to CAD problems–test, verification, and optimization. IEEE Trans. on CAD of Integrated Circuits and Systems 13(9), 1143–1158 (1994)CrossRefGoogle Scholar
  11. 11.
    Marques Silva, J., Sakallah, K.: GRASP – a new search algorithm for satisfiability. In: ICCAD (1996)Google Scholar
  12. 12.
    Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: DAC (2001)Google Scholar
  13. 13.
    Sheeran, M., Stålmarck, G.: A tutorial on Stålmarck’s proof procedure for propositional logic. FMSD 16(1), 23–58 (2000)Google Scholar
  14. 14.
    Spence, I.: tts: A SAT-solver for small, difficult instances. Journal on Sat., Boolean Modeling and Computation (2008), Benchmarks http://www.cs.qub.ac.uk/~i.spence/sdsb
  15. 15.
    Stålmarck, G.: A system for determining propositional logic theorems by applying values and rules to triplets that are generated from a formula (1989), Swedish Patent No. 467,076 (approved 1992); U.S. Patent No. 5,276,897 (approved 1994); European Patent No. 403,454 (approved 1995)Google Scholar
  16. 16.
    Stålmarck, G., Säflund, M.: Modeling and verifying systems and software in propositional logic. In: Int. Conf. on Safety of Computer Controls Systems (1990)Google Scholar
  17. 17.
    Thakur, A., Reps, T.: A generalization of Stålmarck’s method. TR 1699 (revised), CS Dept., Univ. of Wisconsin, Madison, WI (June 2012), www.cs.wisc.edu/wpis/papers/tr1699r.pdf
  18. 18.
    Thakur, A., Reps, T.: A Method for Symbolic Computation of Abstract Operations. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 174–192. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Aditya Thakur
    • 1
  • Thomas Reps
    • 1
    • 2
  1. 1.University of WisconsinMadisonUSA
  2. 2.GrammaTech., Inc.IthacaUSA

Personalised recommendations