Advertisement

Invariant Generation for Parametrized Systems Using Self-reflection

(Extended Version)
  • Alejandro Sanchez
  • Sriram Sankaranarayanan
  • César Sánchez
  • Bor-Yuh Evan Chang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7460)

Abstract

We examine the problem of inferring invariants for parametrized systems. Parametrized systems are concurrent systems consisting of an a priori unbounded number of process instances running the same program. Such systems are commonly encountered in many situations including device drivers, distributed systems, and robotic swarms. In this paper we describe a technique that enables leveraging off-the-shelf invariant generators designed for sequential programs to infer invariants of parametrized systems. The central challenge in invariant inference for parametrized systems is that naïvely exploding the transition system with all interleavings is not just impractical but impossible. In our approach, the key enabler is the notion of a reflective abstraction that we prove has an important correspondence with inductive invariants. This correspondence naturally gives rise to an iterative invariant generation procedure that alternates between computing candidate invariants and creating reflective abstractions.

Keywords

Model Check Abstract Interpretation Process Instance Invariant Generation Abstract Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Bouajjani, A., Jonsson, B., Nilsson, M.: Handling Global Conditions in Parameterized System Verification. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 134–145. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized Verification of Infinite-State Processes with Global Conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent systems. Info. Proc. Letters 22(6), 307–309 (1986)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berdine, J., Lev-Ami, T., Manevich, R., Ramalingam, G., Sagiv, M.: Thread Quantification for Concurrent Shape Analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 399–413. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: Design and Implementation of a Special-Purpose Static Program Analyzer for Safety-Critical Real-Time Embedded Software. In: Mogensen, T.Æ., Schmidt, D.A., Hal Sudborough, I. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 85–108. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Bozzano, M., Delzanno, G.: Beyond Parameterized Verification. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 221–235. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Clarke, E.M., Grumberg, O., Browne, M.C.: Reasoning about networks with many identical finite-state processes. In: PODC 1986, pp. 240–248. ACM (1986)Google Scholar
  8. 8.
    Clarke, E.M., Grumberg, O., Jha, S.: Veryfying Parameterized Networks using Abstraction and Regular Languages. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 395–407. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  9. 9.
    Clarke, E., Talupur, M., Veith, H.: Proving Ptolemy Right: The Environment Abstraction Framework for Model Checking Concurrent Systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 33–47. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Cohen, A., Namjoshi, K.S.: Local proofs for global safety properties. FMSD 34(2), 104–125 (2009)zbMATHCrossRefGoogle Scholar
  11. 11.
    Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear Invariant Generation Using Non-linear Constraint Solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Correll, N., Martinoli, A.: Collective inspection of regular structures using a swarm of miniature robots. In: ISER. Springer Tracts in Advanced Robotics, vol. 21, pp. 375–386. Springer (2004)Google Scholar
  13. 13.
    Cousot, P., Cousot, R.: Abstract Interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL 1977, pp. 238–252. ACM (1977)Google Scholar
  14. 14.
    Cousot, P., Cousot, R.: Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpretation (Invited Paper). In: Bruynooghe, M., Wirsing, M. (eds.) PLILP 1992. LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  15. 15.
    Allen Emerson, E., Kahlon, V.: Reducing Model Checking of the Many to the Few. In: McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 236–254. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Emerson, E.A., Namjoshi, K.S.: Automatic Verification of Parameterized Synchronous Systems. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 87–98. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  17. 17.
    Farzan, A., Kincaid, Z.: Verification of parameterized concurrent programs by modular reasoning about data and control. In: POPL 2012, pp. 297–308. ACM (2012)Google Scholar
  18. 18.
    Flanagan, C., Qadeer, S.: Thread-Modular Model Checking. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Gaubert, S., Goubault, É., Taly, A., Zennou, S.: Static Analysis by Policy Iteration on Relational Domains. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 237–252. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Gawlitza, T., Seidl, H.: Precise Fixpoint Computation Through Strategy Iteration. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 300–315. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. of the ACM 39(3), 675–735 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Henzinger, T.A., Jhala, R., Majumdar, R., Qadeer, S.: Thread-Modular Abstraction Refinement. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 262–274. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract Domains for Static Analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–667. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Kahlon, V., Sankaranarayanan, S., Gupta, A.: Semantic Reduction of Thread Interleavings in Concurrent Programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 124–138. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Lesens, D., Halbwachs, N., Raymond, P.: Automatic verification of parameterized linear networks of processes. In: POPL 1997, pp. 346–357. ACM (1997)Google Scholar
  26. 26.
    Malkis, A., Podelski, A., Rybalchenko, A.: Precise Thread-Modular Verification. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 218–232. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer (1995)Google Scholar
  28. 28.
    McMillan, K.L., Zuck, L.D.: Invisible Invariants and Abstract Interpretation. In: Yahav, E. (ed.) SAS 2011. LNCS (LNAI), vol. 6887, pp. 249–262. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Mellor-Crummey, J.M., Scott, M.L.: Barriers for the sequent symmetry, ftp://ftp.cs.rochester.edu/pub/packages/scalable_synch/locks_and_barriers/Symmetry.tar.Z
  30. 30.
    Miné, A.: Static Analysis of Run-Time Errors in Embedded Critical Parallel C Programs. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 398–418. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  31. 31.
    Namjoshi, K.S.: Symmetry and Completeness in the Analysis of Parameterized Systems. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 299–313. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  32. 32.
    Pnueli, A., Ruah, S., Zuck, L.D.: Automatic Deductive Verification with Invisible Invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 82–97. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  33. 33.
    Sagiv, M., Reps, T., Wilhelm, R.: Solving shape-analysis problems in languages with destructive updating. ACM Trans. Program. Lang. Syst. 20(1), 1–50 (1998)CrossRefGoogle Scholar
  34. 34.
    Sanchez, A., Sankaranarayanan, S., Sánchez, C., Chang, B.Y.E.: Invariant generation for parametrized systems using self-reflection (extended version). Tech. Rep. CU-CS-1094-12, University of Colorado Boulder (2012)Google Scholar
  35. 35.
    Zuck, L.D., Pnueli, A.: Model checking and abstraction to the aid of parameterized systems (a survey). Computer Languages, Systems & Structures 30, 139–169 (2004)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alejandro Sanchez
    • 1
  • Sriram Sankaranarayanan
    • 2
  • César Sánchez
    • 1
    • 3
  • Bor-Yuh Evan Chang
    • 2
  1. 1.IMDEA Software InstituteMadridSpain
  2. 2.University of ColoradoBoulderUSA
  3. 3.Institute for Applied PhysicsCSICSpain

Personalised recommendations