Computer-Aided Cryptographic Proofs

  • Gilles Barthe
  • Benjamin Grégoire
  • Santiago Zanella Béguelin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7460)

Abstract

Provable security [6] is at the heart of modern cryptography. It advocates a mathematical approach in which the security of new cryptographic constructions is defined rigorously, and provably reduced to one or several assumptions, such as the hardness of a computational problem, or the existence of an ideal functionality. A typical provable security statement is of the form: for all adversary \(\mathcal{A}\) against the cryptographic construction \(\mathcal{S}\), there exists an adversary \(\mathcal{B}\) against a security assumption \(\mathcal{H}\), such that if \(\mathcal{A}\) has a high probability of breaking the scheme \(\mathcal{S}\) in time t, then \(\mathcal{B}\) has a high probability of breaking the assumption \(\mathcal{H}\) in time t′ (defined as a function of t).

References

  1. 1.
    Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-Aided Security Proofs for the Working Cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 71–90. Springer, Heidelberg (2011)Google Scholar
  2. 2.
    Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based cryptographic proofs. In: 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009, pp. 90–101. ACM, New York (2009)Google Scholar
  3. 3.
    Barthe, G., Köpf, B., Olmedo, F., Béguelin, S.Z.: Probabilistic reasoning for differential privacy. In: 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012, pp. 97–110. ACM, New York (2012)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Framework for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Deng, Y., Du, W.: Logical, metric, and algorithmic characterisations of probabilistic bisimulation. Technical Report CMU-CS-11-110, Carnegie Mellon University (March 2011)Google Scholar
  6. 6.
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Jonsson, B., Yi, W., Larsen, K.G.: Probabilistic extensions of process algebras. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 685–710. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gilles Barthe
    • 1
  • Benjamin Grégoire
    • 2
  • Santiago Zanella Béguelin
    • 3
  1. 1.IMDEA Software InstituteSpain
  2. 2.INRIA Sophia Antipolis - MéditerranéeFrance
  3. 3.Microsoft ResearchUK

Personalised recommendations