Reducing Problems in Unrooted Tree Compatibility to Restricted Triangulations of Intersection Graphs

  • Rob Gysel
  • Kristian Stevens
  • Dan Gusfield
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7534)


The compatibility problem is the problem of determining if a set of unrooted trees are compatible, i.e. if there is a supertree that represents all of the trees in the set. This fundamental problem in phylogenetics is NP-complete but fixed-parameter tractable in the number of trees. Recently, Vakati and Fernández-Baca showed how to efficiently reduce the compatibility problem to determining if a specific type of constrained triangulation exists for a non-chordal graph derived from the input trees, mirroring a classic result by Buneman for the closely related Perfect-Phylogeny problem. In this paper, we show a different way of efficiently reducing the compatibility problem to that of determining if another type of constrained triangulation exists for a new non-chordal intersection graph. In addition to its conceptual contribution, such reductions are desirable because of the extensive and continuing literature on graph triangulations, which has been exploited to create algorithms that are efficient in practice for a variety of Perfect-Phylogeny problems. Our reduction allows us to frame the compatibility problem as a minimal triangulation problem (in particular, as a chordal graph sandwich problem) and to frame a maximization variant of the compatibility problem as a minimal triangulation problem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernstein, P.A., Goodman, N.: Power of natural semijoins. SIAM Journal on Computing 10, 751–771 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bodlaender, H.L.: Discovering Treewidth. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Bryant, D., Lagergren, J.: Compatibility of unrooted phylogenetic trees is fpt. Theoretical Computer Science 351(3), 296–302 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Buneman, P.: A characterization of rigid circuit graphs. Discrete Mathematics 9, 205–212 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Chandrasekaran, R., Tamir, A.: Polynomially bounded algorithms for locating p-centers on a tree. Mathematical Programming 22(3), 304–315 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Fomin, F.V., Villanger, Y.: Subexponential parameterized algorithm for minimum fill-in. In: SODA 2012 Proceedings, pp. 1737–1746 (2012)Google Scholar
  7. 7.
    Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal of Combinatorial Theory 16(1), 47–56 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Gavril, F.: Generating the maximum spanning trees of a weighted graph. Journal of Algorithms 8, 592–597 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics, vol. 57. Elsevier, Amsterdam (2004)zbMATHGoogle Scholar
  10. 10.
    Gusfield, D.: The multi-state perfect phylogeny problem with missing and removable data. Journal of Computational Biology, 383–399 (2010)Google Scholar
  11. 11.
    Gysel, R., Gusfield, D.: Extensions and improvements to the chordal graph approach to the multistate perfect phylogeny problem. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8(4), 912–917 (2011)CrossRefGoogle Scholar
  12. 12.
    Gysel, R., Lam, F., Gusfield, D.: Constructing perfect phylogenies and proper triangulations for three-state characters. In: Przytycka and Sagot [16], pp. 104–115Google Scholar
  13. 13.
    Heggernes, P.: Minimal triangulation of graphs: a survey. Discrete Mathematics 306(3), 297–317 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Heggernes, P., Mancini, F., Nederlof, J., Villanger, Y.: A Parameterized Algorithm for Chordal Sandwich. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp. 120–130. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Hemminger, R.L., Beineke, L.W.: Line graphs and line digraphs. Academic Press Inc. (1978)Google Scholar
  16. 16.
    Przytycka, T.M., Sagot, M.-F. (eds.): WABI 2011. LNCS, vol. 6833. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  17. 17.
    Rose, D.J.: Triangulated graphs and the elimination process. Journal of Mathematical Analysis and Applications 32(3), 597–609 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Semple, C., Steel, M.: Phylogenetics. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2003)zbMATHGoogle Scholar
  19. 19.
    Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification 9(1), 91–116 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Stevens, K., Kirkpatrick, B.: Efficiently solvable perfect phylogeny problems on binary and k-state data with missing values. In: Przytycka and Sagot [16], pp. 282–297Google Scholar
  21. 21.
    Vakati, S., Fernández-Baca, D.: Graph triangulations and the compatibility of unrooted phylogenetic trees. Applied Mathematics Letters 24(5), 719–723 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Walter, J.R.: Representations of chordal graphs as subtrees of a tree. Journal of Graph Theory 2, 265–267 (1978)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rob Gysel
    • 1
  • Kristian Stevens
    • 1
  • Dan Gusfield
    • 1
  1. 1.Department of Computer ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations