Putting the Developer in-the-Loop: An Interactive GA for Software Re-modularization

  • Gabriele Bavota
  • Filomena Carnevale
  • Andrea De Lucia
  • Massimiliano Di Penta
  • Rocco Oliveto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7515)


This paper proposes the use of Interactive Genetic Algorithms (IGAs) to integrate developer’s knowledge in a re-modularization task. Specifically, the proposed algorithm uses a fitness composed of automatically-evaluated factors—accounting for the modularization quality achieved by the solution—and a human-evaluated factor, penalizing cases where the way re-modularization places components into modules is considered meaningless by the developer.

The proposed approach has been evaluated to re-modularize two software systems, SMOS and GESA. The obtained results indicate that IGA is able to produce solutions that, from a developer’s perspective, are more meaningful than those generated using the full-automated GA. While keeping feedback into account, the approach does not sacrifice the modularization quality, and may work requiring a very limited set of feedback only, thus allowing its application also for large systems without requiring a substantial human effort.


Quality Metrics Object System Formal Concept Analysis System Decomposition Modularization Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anquetil, N., Lethbridge, T.: Experiments with clustering as a software remodularization method. In: WCRE, pp. 235–255 (1999)Google Scholar
  2. 2.
    Bavota, G., De Lucia, A., Marcus, A., Oliveto, R.: Software re-modularization based on structural and semantic metrics. In: WCRE, pp. 195–204 (2010)Google Scholar
  3. 3.
    Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art. Computer Methods in Applied Mechanics and Engineering 191(11-12) (2002)Google Scholar
  4. 4.
    Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. Wiley (1998)Google Scholar
  5. 5.
    Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley (2001)Google Scholar
  6. 6.
    Di Penta, M., Neteler, M., Antoniol, G., Merlo, E.: A language-independent software renovation framework. JSS 77(3), 225–240 (2005)Google Scholar
  7. 7.
    Doval, D., Mancoridis, S., Mitchell, B.S.: Automatic clustering of software systems using a genetic algorithm. In: STEP, pp. 73–82 (1999)Google Scholar
  8. 8.
    Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the Design of Existing Code. Addison-Wesley Professional (1999)Google Scholar
  9. 9.
    Grissom, R.J., Kim, J.J.: Effect sizes for research: A broad practical approach, 2nd edn. Lawrence Earlbaum Associates (2005)Google Scholar
  10. 10.
    Mancoridis, S., Mitchell, B.S., Rorres, C., Chen, Y.F., Gansner, E.R.: Using automatic clustering to produce high-level system organizations of source code. In: IWPC, pp. 45–53 (1998)Google Scholar
  11. 11.
    Maqbool, O., Babri, H.A.: Hierarchical clustering for software architecture recovery. IEEE TSE 33(11), 759–780 (2007)Google Scholar
  12. 12.
    Mitchell, B.S.: A Heuristic Search Approach to Solving the Software Clustering Problem. Ph.D. thesis, Drexel University, Philadelphia (2002)Google Scholar
  13. 13.
    Mitchell, B.S., Mancoridis, S.: On the automatic modularization of software systems using the bunch tool. IEEE TSE 32(3), 193–208 (2006)Google Scholar
  14. 14.
    Praditwong, K., Harman, M., Yao, X.: Software module clustering as a multi-objective search problem. IEEE TSE 37(2), 264–282 (2011)Google Scholar
  15. 15.
    Siff, M., Reps, T.W.: Identifying modules via concept analysis. IEEE TSE 25(6), 749–768 (1999)Google Scholar
  16. 16.
    Simons, C.L., Parmee, I.C., Gwynllyw, R.: Interactive, Evolutionary Search in Upstream Object-Oriented Class Design. IEEE TSE 36(6), 798–816 (2010)Google Scholar
  17. 17.
    Takagi, H.: Interactive evolutionary computation: Fusion of the capacities of EC optimization and human evaluation. Proceedings of the IEEE 89(9), 1275–1296 (2001)CrossRefGoogle Scholar
  18. 18.
    Tonella, P., Susi, A., Palma, F.: Using interactive GA for requirements prioritization. In: SSBSE, pp. 57–66 (2010)Google Scholar
  19. 19.
    Wen, Z., Tzerpos, V.: An effectiveness measure for software clustering algorithms. In: IWPC, pp. 194–203 (2004)Google Scholar
  20. 20.
    Wiggerts, T.A.: Using clustering algorithms in legacy systems re-modularization. In: WCRE, p. 33. IEEE Computer Society (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gabriele Bavota
    • 1
  • Filomena Carnevale
    • 1
  • Andrea De Lucia
    • 1
  • Massimiliano Di Penta
    • 2
  • Rocco Oliveto
    • 3
  1. 1.University of SalernoFiscianoItaly
  2. 2.University of SannioBeneventoItaly
  3. 3.University of MolisePescheItaly

Personalised recommendations