Automatic Synthesis of Controllers for Real Robots Based on Preprogrammed Behaviors

  • Miguel Duarte
  • Sancho Oliveira
  • Anders Lyhne Christensen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7426)


We present a novel methodology for the synthesis of behavioral control for real robotic hardware. In our approach, neural controllers decide when different preprogrammed behaviors should be active during task execution. We evaluate our approach in a double T-maze task carried out by an e-puck robot. We compare results obtained in our setup with results obtained in a traditional evolutionary robotics setup where the neural controller has direct control over the robot’s actuators. The results show that the combination of preprogrammed and evolved control offers two key benefits over a traditional evolutionary robotics approach: (i) solutions are synthesized faster and achieve a higher performance, and (ii) solutions synthesized in simulation maintain their performance when transferred to real robotic hardware.


Behavioral Control Autonomous Robot Real Robot Neural Controller Automatic Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beer, R.D., Gallagher, J.C.: Evolving dynamical neural networks for adaptive behavior. Adaptive Behavior 1, 91–122 (1992)CrossRefGoogle Scholar
  2. 2.
    Blynel, J., Floreano, D.: Exploring the T-Maze: Evolving Learning-Like Robot Behaviors Using CTRNNs. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoWorkshops 2003. LNCS, vol. 2611, pp. 593–604. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Bongard, J., Lipson, H.: Once more unto the breach: Co-evolving a robot and its simulator. In: Proceedings of 9th International Conference on the Simulation and Synthesis of Living Systems, pp. 57–62. MIT Press, Cambridge (2004)Google Scholar
  4. 4.
    Brooks, R.A.: A robust layered control system for a mobile robot. IEEE Journal on Robotics and Automation 2(1), 14–23 (1986)CrossRefGoogle Scholar
  5. 5.
    Brooks, R.A.: Artificial life and real robots. In: Proceedings of the First European Conference on Artificial Life, pp. 3–10. MIT Press/Bradford Books, Cambridge, MA (1992)Google Scholar
  6. 6.
    Floreano, D., Keller, L.: Evolution of adaptive behaviour in robots by means of Darwinian selection. PLoS Biology 8, 1–8 (2010)CrossRefGoogle Scholar
  7. 7.
    Floreano, D., Mondada, F.: Evolutionary neurocontrollers for autonomous mobile robots. Neural Networks 11(7-8), 1461–1478 (1998)CrossRefGoogle Scholar
  8. 8.
    Floreano, D., Urzelai, J.: Evolution of plastic control networks. Autonomous Robots 11(3), 311–317 (2001)zbMATHCrossRefGoogle Scholar
  9. 9.
    Husbands, P.: Evolving Robot Behaviours with Diffusing Gas Networks. In: Husbands, P., Meyer, J.-A. (eds.) EvoROB/EvoRobot 1998. LNCS, vol. 1468, pp. 71–86. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Jakobi, N., Jakobi, N.: Evolutionary robotics and the radical envelope-of-noise hypothesis. Adaptive Behavior 6, 325–368 (1997)CrossRefGoogle Scholar
  11. 11.
    Kam-Chuen, J., Giles, C., Horne, B.: An analysis of noise in recurrent neural networks: convergence and generalization. IEEE Transactions on Neural Networks 7, 1424–1438 (1996)CrossRefGoogle Scholar
  12. 12.
    Koos, S., Mouret, J.-B., Doncieux, S.: The transferability approach: Crossing the reality gap in evolutionary robotics. IEEE Transactions on Evolutionary Computation (in press, 2012)Google Scholar
  13. 13.
    Lee, W.-P.: Evolving complex robot behaviors. Inf. Sci. 121(1-2), 1–25 (1999)CrossRefGoogle Scholar
  14. 14.
    Miglino, O., Lund, H.H., Nolfi, S.: Evolving mobile robots in simulated and real environments. Artificial Life 2, 417–434 (1996)CrossRefGoogle Scholar
  15. 15.
    Moioli, R.C., Vargas, P.A., Zuben, F.J.V., Husbands, P.: Towards the evolution of an artificial homeostatic system. In: IEEE Congress on Evolutionary Computation, pp. 4023–4030 (2008)Google Scholar
  16. 16.
    Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Christophe Zufferey, J., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education in engineering. In: Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, pp. 59–65 (2009)Google Scholar
  17. 17.
    Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics: A survey and analysis. Robotics and Autonomous Systems 57(4), 345–370 (2009)CrossRefGoogle Scholar
  18. 18.
    Nolfi, S., Floreano, D., Miglino, O., Mondada, F.: How to evolve autonomous robots: Different approaches in evolutionary robotics. In: Proceedings of the 4th International Workshop on Artificial Life, pp. 190–197. MIT Press, Cambridge (1994)Google Scholar
  19. 19.
    Tolman, E.C., Honzik, C.H.: Introduction and removal of reward, and maze performance in rats. University of California Publications in Psychology 4, 257–275 (1930)Google Scholar
  20. 20.
    Torta, A.B.L., Kramer, M.A., Thorn, C., Gibson, D.J., Kubota, Y., Graybiel, A.M., Kopell, N.J.: Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a t-maze task. Proceedings of the National Academy of Sciences 105(51), 20517–20522 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Miguel Duarte
    • 1
  • Sancho Oliveira
    • 1
  • Anders Lyhne Christensen
    • 1
  1. 1.Instituto de Telecomunicações & Instituto Universitário de Lisboa (ISCTE-IUL)LisbonPortugal

Personalised recommendations