Extending Partial Representations of Function Graphs and Permutation Graphs

  • Pavel Klavík
  • Jan Kratochvíl
  • Tomasz Krawczyk
  • Bartosz Walczak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7501)


Function graphs are graphs representable by intersections of continuous real-valued functions on the interval [0,1] and are known to be exactly the complements of comparability graphs. As such they are recognizable in polynomial time. Function graphs generalize permutation graphs, which arise when all functions considered are linear.

We focus on the problem of extending partial representations, which generalizes the recognition problem. We observe that for permutation graphs an easy extension of Golumbic’s comparability graph recognition algorithm can be exploited. This approach fails for function graphs. Nevertheless, we present a polynomial-time algorithm for extending a partial representation of a graph by functions defined on the entire interval [0,1] provided for some of the vertices. On the other hand, we show that if a partial representation consists of functions defined on subintervals of [0,1], then the problem of extending this representation to functions on the entire interval [0,1] becomes NP-complete.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angelini, P., Di Battista, G., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing planarity of partially embedded graphs. In: SODA 2010, pp. 202–221 (2010)Google Scholar
  2. 2.
    Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inform. Process. Lett. 8, 121–123 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and planarity using PQ-tree algorithms. J. Comput. Sys. Sci. 13, 335–379 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems (2011),
  5. 5.
    Even, S., Pnueli, A., Lempel, A.: Permutation graphs and transitive graphs. J. ACM 19, 400–410 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Fiala, J.: NP-completeness of the edge precoloring extension problem on bipartite graphs. J. Graph Theory 43, 156–160 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Gallai, T.: Transitiv orientierbare Graphen. Acta Mathematica Academiae Scientiarum Hungaricae 18, 25–66 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Golumbic, M.C.: The complexity of comparability graph recognition and coloring. Computing 18, 199–208 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press (1980)Google Scholar
  10. 10.
    Golumbic, M.C., Rotem, D., Urrutia, J.: Comparability graphs and intersection graphs. Discrete Math. 43, 37–46 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Jampani, K.R., Lubiw, A.: Simultaneous Interval Graphs. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 206–217. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Jampani, K.R., Lubiw, A.: The simultaneous representation problem for chordal, comparability and permutation graphs. Graph Algorithms Appl. 16, 283–315 (2012)CrossRefGoogle Scholar
  13. 13.
    Klavík, P., Kratochvíl, J., Vyskočil, T.: Extending Partial Representations of Interval Graphs. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 276–285. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Kratochvíl, J.: String graphs. II. recognizing string graphs is NP-hard. J. Combin. Theory Ser. B 52, 67–78 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Krom, M.R.: The decision problem for a class of first-order formulas in which all disjunctions are binary. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 13, 15–20 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kuratowski, K.: Sur le problème des courbes gauches en topologie. Fund. Math. 15, 217–283 (1930)Google Scholar
  17. 17.
    Marx, D.: NP-completeness of list coloring and precoloring extension on the edges of planar graphs. J. Graph Theory 49, 313–324 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation. Discrete Math. 201, 189–241 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Patrignani, M.: On Extending a Partial Straight-Line Drawing. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 380–385. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in NP. In: STOC 2002, pp. 1–6 (2002)Google Scholar
  21. 21.
    Spinrad, J.P.: Efficient Graph Representations. Field Institute Monographs (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pavel Klavík
    • 1
  • Jan Kratochvíl
    • 1
  • Tomasz Krawczyk
    • 2
  • Bartosz Walczak
    • 2
  1. 1.Department of Applied Mathematics, Faculty of Mathematics and PhysicsCharles UniversityCzech Republic
  2. 2.Theoretical Computer Science Department, Faculty of Mathematics and Computer ScienceJagiellonian UniversityPoland

Personalised recommendations