Parameterized Complexity of Induced H-Matching on Claw-Free Graphs

  • Danny Hermelin
  • Matthias Mnich
  • Erik Jan van Leeuwen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7501)


The Induced H -Matching problem asks to find k disjoint, induced subgraphs isomorphic to H in a given graph G such that there are no edges between vertices of different subgraphs. This problem generalizes amongst others the classical Independent Set and Induced Matching problems. We show that Induced H -Matching is fixed-parameter tractable in k on claw-free graphs when H is a fixed connected graph of constant size, and even admits a polynomial kernel when H is a clique. Both results rely on a new, strong algorithmic structure theorem for claw-free graphs. To show the fixed-parameter tractability of the problem, we additionally apply the color-coding technique in a nontrivial way. Complementing the above two positive results, we prove the W[1]-hardness of Induced H -Matching for graphs excluding K 1,4 as an induced subgraph. In particular, we show that Independent Set is W[1]-hard on K 1,4-free graphs.


Parameterized Complexity Line Graph Decomposition Theorem Polynomial Kernel Graph Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Cameron, K., Hell, P.: Independent packings in structured graphs. Math. Programming 105(2-3), 201–213 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chudnovsky, M., Ovetsky, A.: Coloring quasi-line graphs. J. Graph Theory 54(1), 41–50 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Chudnovsky, M., Seymour, P.D.: The structure of claw-free graphs. In: Surveys in Combinatorics, vol. 327, pp. 153–171. Cambridge University Press (2005)Google Scholar
  5. 5.
    Cygan, M., Philip, G., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Dominating set is fixed parameter tractable in claw-free graphs. Theoretical Computer Science 412(50), 6982–7000 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dell, H., Marx, D.: Kernelization of packing problems. In: Proc. SODA 2012, pp. 68–81 (2012)Google Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer (1999)Google Scholar
  8. 8.
    Faenza, Y., Oriolo, G., Stauffer, G.: An algorithmic decomposition of claw-free graphs leading to an O(n 3)-algorithm for the weighted stable set problem. In: Proc. SODA 2011, pp. 630–646 (2011)Google Scholar
  9. 9.
    Faudree, R.J., Flandrin, E., Ryjácek, Z.: Claw-free graphs - A survey. Discrete Math. 164(1-3), 87–147 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theoretical Computer Science 410(1), 53–61 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Fellows, M.R., Knauer, C., Nishimura, N., Ragde, P., Rosamond, F.A., Stege, U., Thilikos, D.M., Whitesides, S.: Faster fixed-parameter tractable algorithms for matching and packing problems. Algorithmica 52(2), 167–176 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman (1979)Google Scholar
  13. 13.
    Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced Disjoint Paths in AT-Free Graphs. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 153–164. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced Disjoint Paths in Claw-Free Graphs. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 515–526. Springer, Heidelberg (2012)Google Scholar
  15. 15.
    Hermelin, D., Mnich, M., van Leeuwen, E.J., Woeginger, G.J.: Domination When the Stars Are Out. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 462–473. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Hermelin, D., Wu, X.: Weak compositions and their applications to polynomial lower bounds for kernelization. In: Proc. SODA 2012, pp. 104–113 (2012)Google Scholar
  17. 17.
    King, A.D., Reed, B.A.: Bounding χ in terms of ω and Δ for quasi-line graphs. J. Graph Theory 59(3), 215–228 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Kirkpatrick, D., Hell, P.: On the complexity of general graph factor problems. SIAM J. Computing 12(3), 601–609 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Divide-and-Color. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 58–67. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Kobler, D., Rotics, U.: Finding maximum induced matchings in subclasses of claw-free and p 5-free graphs, and in graphs with matching and induced matching of equal maximum size. Algorithmica 37(4), 327–346 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Marx, D.: Efficient Approximation Schemes for Geometric Problems? In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 448–459. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Moser, H.: A Problem Kernelization for Graph Packing. In: Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 401–412. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Moser, H., Thilikos, D.M.: Parameterized complexity of finding regular induced subgraphs. In: Broersma, H., Dantchev, S.S., Johnson, M., Szeider, S. (eds.) Proc. ACiD 2006. Texts in Algorithmics, vol. 7, pp. 107–118. King’s College, London (2006)Google Scholar
  24. 24.
    Oriolo, G., Pietropaoli, U., Stauffer, G.: On the recognition of fuzzy circular interval graphs. Discrete Math. 312(8), 1426–1435 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Prieto, E., Sloper, C.: Looking at the stars. Theoretical Computer Science 351(3), 437–445 (2006)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Danny Hermelin
    • 1
  • Matthias Mnich
    • 2
  • Erik Jan van Leeuwen
    • 3
  1. 1.Max Planck Institute for InformaticsSaarbrückenGermany
  2. 2.Cluster of Excellence “Multimodal Computing and Interaction”Saarland UniversitySaarbrückenGermany
  3. 3.Dept. Computer, Control, Managm. Eng.Sapienza University of RomeItaly

Personalised recommendations