Advertisement

Induced Disjoint Paths in Claw-Free Graphs

  • Petr A. Golovach
  • Daniël Paulusma
  • Erik Jan van Leeuwen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7501)

Abstract

Paths P 1,…,P k in a graph G = (V,E) are said to be mutually induced if for any 1 ≤ i < j ≤ k, P i and P j have neither common vertices nor adjacent vertices (except perhaps their end-vertices). The Induced Disjoint Paths problem is to test whether a graph G with k pairs of specified vertices (s i ,t i ) contains k mutually induced paths P i such that P i connects s i and t i for i = 1,…,k. This problem is known to be NP-complete already for k = 2, but for n-vertex claw-free graphs, Fiala et al.gave an n O(k)-time algorithm. We improve the latter result by showing that the problem is fixed-parameter tractable for claw-free graphs when parameterized by k. Several related problems, such as the k -in-a-Path problem, are shown to be fixed-parameter tractable for claw-free graphs as well. We prove that an improvement of these results in certain directions is unlikely, for example by noting that the Induced Disjoint Paths problem cannot have a polynomial kernel for line graphs (a type of claw-free graphs), unless NP ⊆ coNP/poly. Moreover, the problem becomes NP-complete, even when k = 2, for the more general class of K 1,4-free graphs. Finally, we show that the n O(k)-time algorithm of Fiala et al.for testing whether a claw-free graph contains some k-vertex graph H as a topological induced minor is essentially optimal by proving that this problem is W[1]-hard even if G and H are line graphs.

Keywords

Line Graph Interval Graph Polynomial Kernel Disjoint Path Graph Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bienstock, D.: On the complexity of testing for odd holes and induced odd paths. Discrete Mathematics 90, 85–92 (1991); See also Corrigendum. Discrete Mathematics 102, 109 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. Theoretical Computer Science 412, 4570–4578 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bruhn, H., Saito, A.: Clique or hole in claw-free graphs. Journal of Combinatorial Theory, Series B 102, 1–13 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Chudnovsky, M., Seymour, P.D.: The structure of claw-free graphs. In: Webb, B.S. (ed.) Surveys in Combinatorics. London Mathematical Society Lecture Notes Series, vol. 327, pp. 153–171. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  5. 5.
    Chudnovsky, M., Seymour, P.D.: The three-in-a-tree problem. Combinatorica 30, 387–417 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Deng, X., Hell, P., Huang, J.: Linear time representation algorithm for proper circular-arc graphs and proper interval graphs. SIAM Journal on Computing 25, 390–403 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Derhy, N., Picouleau, C.: Finding induced trees. Discrete Applied Mathematics 157, 3552–3557 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Derhy, N., Picouleau, C., Trotignon, N.: The four-in-a-tree problem in triangle-free graphs. Graphs and Combinatorics 25, 489–502 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Fellows, M.R.: The Robertson-Seymour theorems: A survey of applications. In: Richter, R.B. (ed.) Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference. Contemporary Mathematics, vol. 89, pp. 1–18. American Mathematical Society, Providence (1989)Google Scholar
  10. 10.
    Fellows, M.R., Kratochvíl, J., Middendorf, M., Pfeiffer, F.: The Complexity of Induced Minors and Related Problems. Algorithmica 13, 266–282 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Fiala, J., Kamiński, M., Lidicky, B., Paulusma, D.: The k-in-a-path problem for claw-free graphs. Algorithmica 62, 499–519 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Fiala, J., Kamiński, M., Paulusma, D.: A note on contracting claw-free graphs (manuscript, submitted)Google Scholar
  13. 13.
    Fiala, J., Kamiński, M., Paulusma, D.: Detecting induced star-like minors in polynomial time (manuscript, submitted)Google Scholar
  14. 14.
    Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced Disjoint Paths in AT-Free Graphs. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 153–164. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Grohe, M., Kawarabayashi, K., Marx, D., Wollan, P.: Finding topological subgraphs is fixed-parameter tractable. In: Proc. STOC 2011, pp. 479–488 (2011)Google Scholar
  16. 16.
    Habib, M., Paul, C., Viennot, L.: A Synthesis on Partition Refinement: A Useful Routine for Strings, Graphs, Boolean Matrices and Automata. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 25–38. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Harary, F.: Graph Theory. Addison-Wesley, Reading MA (1969)Google Scholar
  18. 18.
    Hermelin, D., Mnich, M., van Leeuwen, E.J., Woeginger, G.J.: Domination When the Stars Are Out. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 462–473. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Hermelin, D., Mnich, M., van Leeuwen, E.J., Woeginger, G.J.: Domination when the stars are out. arXiv:1012.0012v1 [cs.DS]Google Scholar
  20. 20.
    Karp, R.M.: On the complexity of combinatorial problems. Networks 5, 45–68 (1975)MathSciNetzbMATHGoogle Scholar
  21. 21.
    King, A., Reed, B.: Bounding χ in terms of ω and δ for quasi-line graphs. Journal of Graph Theory 228, 215–228 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kobayashi, Y., Kawarabayashi, K.: Algorithms for finding an induced cycle in planar graphs and bounded genus graphs. In: Mathieu, C. (ed.) Proc. SODA 2009, pp. 1146–1155. ACM Press, New York (2009)Google Scholar
  23. 23.
    Kobayashi, Y., Kawarabayashi, K.: A linear time algorithm for the induced disjoint paths problem in planar graphs. Journal of Computer and System Sciences 78, 670–680 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Lévêque, B., Lin, D.Y., Maffray, F., Trotignon, N.: Detecting induced subgraphs. Discrete Applied Mathematics 157, 3540–3551 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Liu, W., Trotignon, N.: The k-in-a-tree problem for graphs of girth at least k. Discrete Applied Mathematics 158, 1644–1649 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Lynch, J.F.: The equivalence of theorem proving and the interconnection problem. SIGDA Newsletter 5, 31–36 (1975)CrossRefGoogle Scholar
  27. 27.
    McConnell, R.M.: Linear-Time Recognition of Circular-Arc Graphs. Algorithmica 37, 93–147 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Natarajan, S., Sprague, A.P.: Disjoint paths in circular arc graphs. Nordic Journal of Computing 3, 256–270 (1996)MathSciNetGoogle Scholar
  29. 29.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press (2006)Google Scholar
  30. 30.
    Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. Journal of Combinatorial Theory, Series B 63, 65–110 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Roussopoulos, N.D.: A max {m,n} algorithm for determining the graph H from its line graph G. Information Processing Letters 2, 108–112 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Ryjáček, Z.: On a closure concept in claw-free graphs. Journal of Combinatorial Theory, Series B 70, 217–224 (1997)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Petr A. Golovach
    • 1
  • Daniël Paulusma
    • 1
  • Erik Jan van Leeuwen
    • 2
  1. 1.School of Engineering and Computer ScienceDurham UniversityEngland
  2. 2.Dept. Computer, Control, Managm. Eng.Sapienza University of RomeItaly

Personalised recommendations