Lines through Segments in 3D Space

  • Efi Fogel
  • Michael Hemmer
  • Asaf Porat
  • Dan Halperin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7501)


Given a set \(\mathcal S\) of n line segments in three-dimensional space, finding all the lines that simultaneously intersect at least four line segments in \(\mathcal S\) is a fundamental problem that arises in a variety of domains. We refer to this problem as the lines-through-segments problem, or LTS for short. We present an efficient output-sensitive algorithm and its implementation to solve the LTS problem. The implementation is exact and properly handles all degenerate cases. To the best of our knowledge, this is the first implementation for the LTS problem that is (i) output sensitive and (ii) handles all degenerate cases. The algorithm runs in O((n 3 + I)logn) time, where I is the output size, and requires O(nlogn + J) working space, where J is the maximum number of output elements that intersect two fixed line segments; I and J are bounded by O(n 4) and O(n 2), respectively. We use Cgal arrangements and in particular its support for two-dimensional arrangements in the plane and on the sphere in our implementation. The efficiency of our implementation stems in part from careful crafting of the algebraic tools needed in the computation. We also report on the performance of our algorithm and its implementation compared to others. The source code of the LTS program as well as the input examples for the experiments can be obtained from .


Line Segment Output Line Output Element Output Size Horizontal Asymptote 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berberich, E., Fogel, E., Halperin, D., Kerber, M., Setter, O.: Arrangements on parametric surfaces II: Concretizations and applications. Math. in Comput. Sci. 4, 67–91 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Berberich, E., Fogel, E., Halperin, D., Mehlhorn, K., Wein, R.: Arrangements on parametric surfaces I: General framework and infrastructure. Math. in Comput. Sci. 4, 45–66 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Berberich, E., Hemmer, M., Kerber, M.: A generic algebraic kernel for non-linear geometric applications. In: Proc. 27th Annu. ACM Symp. Comput. Geom., pp. 179–186. ACM Press, New York (2011)Google Scholar
  4. 4.
    Brönnimann, H., Burnikel, C., Pion, S.: Interval arithmetic yields efficient dynamic filters for computational geometry. Disc. Appl. Math. 109, 25–47 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Brönnimann, H., Devillers, O., Dujmovic, V., Everett, H., Glisse, M., Goaoc, X., Lazard, S., Suk Na, H.: Lines and free line segments tangent to arbitrary three-dimensional convex polyhedra. SIAM J. on Computing 37, 522–551 (2006)CrossRefGoogle Scholar
  6. 6.
    Brönnimann, H., Everett, H., Lazard, S., Sottile, F., Whitesides, S.: Transversals to line segments in three-dimensional space. Disc. Comput. Geom. 34, 381–390 (2005), doi:10.1007/s00454-005-1183-1zbMATHCrossRefGoogle Scholar
  7. 7.
    Demouth, J., Devillers, O., Everett, H., Glisse, M., Lazard, S., Seidel, R.: On the complexity of umbra and penumbra. Comput. Geom. Theory Appl. 42, 758–771 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Devillers, O., Glisse, M., Lazard, S.: Predicates for line transversals to lines and line segments in three-dimensional space. In: Proc. 24th Annu. ACM Symp. Comput. Geom., pp. 174–181. ACM Press (2008)Google Scholar
  9. 9.
    Devillers, O., Pion, S.: Efficient exact geometric predicates for Delaunay triangulations. In: Proc. 5th Workshop Alg. Eng. Experiments, pp. 37–44 (2003)Google Scholar
  10. 10.
    Everett, H., Lazard, S., Lenhart, W., Redburn, J., Zhang, L.: On the degree of standard geometric predicates for line transversals. Comput. Geom. Theory Appl. 42(5), 484–494 (2009)zbMATHCrossRefGoogle Scholar
  11. 11.
    Fogel, E., Halperin, D.: Polyhedral Assembly Partitioning with Infinite Translations or The Importance of Being Exact. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds.) Algorithmic Foundation of Robotics VIII. STAR, vol. 57, pp. 417–432. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Hemmer, M., Hert, S., Kettner, L., Pion, S., Schirra, S.: Number types. Cgal User and Reference Manual. Cgal Editorial Board, 4.0 edn. (2012),
  13. 13.
    McKenna, M., O’Rourke, J.: Arrangements of lines in 3-space: a data structure with applications. In: Proc. 4th Annu. ACM Symp. Comput. Geom., pp. 371–380. ACM Press, New York (1988)Google Scholar
  14. 14.
    Pion, S., Fabri, A.: A Generic Lazy Evaluation Scheme for Exact Geometric Computations. Sci. Comput. Programming 76(4), 307–323 (2011)CrossRefGoogle Scholar
  15. 15.
    Redburn, J.: Robust computation of the non-obstructed line segments tangent to four amongst n triangles. PhD thesis, Williams College, Massachusetts (2003)Google Scholar
  16. 16.
    Salzman, O., Hemmer, M., Raveh, B., Halperin, D.: Motion planning via manifold samples. In: Proc. 19th Annu. Eur. Symp. Alg., pp. 493–505 (2011)Google Scholar
  17. 17.
    Teller, S., Hohmeyer, M.: Determining the lines through four lines. J. of Graphics, Gpu, and Game Tools 4(3), 11–22 (1999)Google Scholar
  18. 18.
    The Cgal Project. Cgal User and Reference Manual. Cgal Editorial Board, 4.0 edn. (2012),
  19. 19.
    Wein, R., Fogel, E., Zukerman, B., Halperin, D.: Advanced programming techniques applied to Cgal’s arrangement package. Comput. Geom. Theory Appl. 38(1-2), 37–63 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Wein, R., Fogel, E., Zukerman, B., Halperin, D.: 2D arrangements. Cgal User and Reference Manual. Cgal Editorial Board, 4.0 edn. (2012),
  21. 21.
    Wilson, R.H., Kavraki, L., Latombe, J.-C., Lozano-Pérez, T.: Two-handed assembly sequencing. Int. J. of Robotics Research 14, 335–350 (1995)CrossRefGoogle Scholar
  22. 22.
    Yap, C.-K., Dubé, T.: The exact computation paradigm. In: Du, D.-Z., Hwang, F.K. (eds.) GI 1973, 2nd edn. LNCS, vol. 1, pp. 452–492. World Scientific, Singapore (1973)Google Scholar
  23. 23.
    Zhang, L., Everett, H., Lazard, S., Weibel, C., Whitesides, S.H.: On the Size of the 3D Visibility Skeleton: Experimental Results. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 805–816. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Efi Fogel
    • 1
  • Michael Hemmer
    • 1
  • Asaf Porat
    • 1
  • Dan Halperin
    • 1
  1. 1.The Blavatnik School of Computer ScienceTel Aviv UniversityIsrael

Personalised recommendations