Hierarchical Hub Labelings for Shortest Paths

  • Ittai Abraham
  • Daniel Delling
  • Andrew V. Goldberg
  • Renato F. Werneck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7501)

Abstract

We study hierarchical hub labelings for computing shortest paths. Our new theoretical insights into the structure of hierarchical labels lead to faster preprocessing algorithms, making the labeling approach practical for a wider class of graphs. We also find smaller labels for road networks, improving the query speed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: VC-Dimension and Shortest Path Algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 690–699. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 230–241. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical Hub Labelings for Shortest Paths. MSR-TR-2012-46. Microsoft Research (2012)Google Scholar
  4. 4.
    Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway Dimension, Shortest Paths, and Provably Efficient Algorithms. In: SODA, pp. 782–793 (2010)Google Scholar
  5. 5.
    Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D.: 10th DIMACS Implementation Challenge – Graph Partitioning and Graph Clustering (2011)Google Scholar
  6. 6.
    Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In Transit to Constant Shortest-Path Queries in Road Networks. In: ALENEX, pp. 46–59 (2007)Google Scholar
  7. 7.
    Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.: Combining Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. ACM J. of Exp. Algo. 15(2.3), 1–31 (2010)MathSciNetGoogle Scholar
  8. 8.
    Cheng, J., Yu, J.X.: On-line Exact Shortest Distance Query Processing. In: EDBT, pp. 481–492. ACM Press (2009)Google Scholar
  9. 9.
    Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and Distance Queries via 2-hop Labels. SIAM J. Comput. 32 (2003)Google Scholar
  10. 10.
    Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable Route Planning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 376–387. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Delling, D., Goldberg, A.V., Werneck, R.F.: Faster Batched Shortest Paths in Road Networks. In: ATMOS, OASIcs, vol. 20, pp. 52–63 (2011)Google Scholar
  12. 12.
    Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.): The Shortest Path Problem: Ninth DIMACS Implementation Challenge. DIMACS, vol. 74. AMS (2009)Google Scholar
  14. 14.
    Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Fredman, M.L., Tarjan, R.E.: Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms. J. Assoc. Comput. Mach. 34, 596–615 (1987)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance Labeling in Graphs. Journal of Algorithms 53, 85–112 (2004)MATHCrossRefGoogle Scholar
  17. 17.
    Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact Routing in Large Road Networks Using Contraction Hierarchies. Transportation Science (2012)Google Scholar
  18. 18.
    Goldberg, A.V.: A Practical Shortest Path Algorithm with Linear Expected Time. SIAM Journal on Computing 37, 1637–1655 (2008)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Kieritz, T., Luxen, D., Sanders, P., Vetter, C.: Distributed Time-Dependent Contraction Hierarchies. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 83–93. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Kleinberg, J.: Navigation in a Small World. Nature 406, 845 (2000)CrossRefGoogle Scholar
  21. 21.
    Sander, P.V., Nehab, D., Chlamtac, E., Hoppe, H.: Efficient Traversal of Mesh Edges Using Adjacency Primitives. ACM Trans. on Graphics 27, 144:1–144:9 (2008)CrossRefGoogle Scholar
  22. 22.
    Watts, D., Strogatz, S.: Collective Dynamics of “Small-World” Networks. Nature 393, 409–410 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ittai Abraham
    • 1
  • Daniel Delling
    • 1
  • Andrew V. Goldberg
    • 1
  • Renato F. Werneck
    • 1
  1. 1.Microsoft Research Silicon ValleyUSA

Personalised recommendations