Faster Geometric Algorithms via Dynamic Determinant Computation

  • Vissarion Fisikopoulos
  • Luis Peñaranda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7501)

Abstract

Determinant computation is the core procedure in many important geometric algorithms, such as convex hull computations and point locations. As the dimension of the computation space grows, a higher percentage of the computation time is consumed by these predicates. In this paper we study the sequences of determinants that appear in geometric algorithms. We use dynamic determinant algorithms to speed-up the computation of each predicate by using information from previously computed predicates.

We propose two dynamic determinant algorithms with quadratic complexity when employed in convex hull computations, and with linear complexity when used in point location problems. Moreover, we implement them and perform an experimental analysis. Our implementations outperform the state-of-the-art determinant and convex hull implementations in most of the tested scenarios, as well as giving a speed-up of 78 times in point location problems.

Keywords

computational geometry determinant algorithms orientation predicate convex hull point location experimental analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott, J., Bronstein, M., Mulders, T.: Fast deterministic computation of determinants of dense matrices. In: ISSAC, pp. 197–203 (1999)Google Scholar
  2. 2.
    Avis, D.: lrs: A revised implementation of the reverse search vertex enumeration algorithm. In: Polytopes - Combinatorics and Computation, Oberwolfach Seminars, vol. 29, pp. 177–198. Birkhäuser-Verlag (2000)Google Scholar
  3. 3.
    Bartlett, M.S.: An inverse matrix adjustment arising in discriminant analysis. The Annals of Mathematical Statistics 22(1), 107–111 (1951)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Barvinok, A., Pommersheim, J.E.: An algorithmic theory of lattice points in polyhedra. New Perspectives in Algebraic Combinatorics, 91–147 (1999)Google Scholar
  5. 5.
    Bird, R.: A simple division-free algorithm for computing determinants. Inf. Process. Lett. 111, 1072–1074 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boissonnat, J.D., Devillers, O., Hornus, S.: Incremental construction of the Delaunay triangulation and the Delaunay graph in medium dimension. In: SoCG, pp. 208–216 (2009)Google Scholar
  7. 7.
    Boost: peer reviewed C++ libraries, http://www.boost.org
  8. 8.
    Brönnimann, H., Emiris, I., Pan, V., Pion, S.: Sign determination in Residue Number Systems. Theor. Comp. Science 210(1), 173–197 (1999)MATHCrossRefGoogle Scholar
  9. 9.
    Büeler, B., Enge, A., Fukuda, K.: Exact volume computation for polytopes: A practical study (1998)Google Scholar
  10. 10.
    CGAL: Computational geometry algorithms library, http://www.cgal.org
  11. 11.
    Clarkson, K., Mehlhorn, K., Seidel, R.: Four results on randomized incremental constructions. Comput. Geom.: Theory & Appl. 3, 185–212 (1993)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics. Springer, Heidelberg (2005)MATHGoogle Scholar
  13. 13.
    Dumas, J.G., Gautier, T., Giesbrecht, M., Giorgi, P., Hovinen, B., Kaltofen, E., Saunders, B., Turner, W., Villard, G.: Linbox: A generic library for exact linear algebra. In: ICMS, pp. 40–50 (2002)Google Scholar
  14. 14.
    Edelsbrunner, H.: Algorithms in combinatorial geometry. Springer-Verlag New York, Inc., New York (1987)MATHCrossRefGoogle Scholar
  15. 15.
    Emiris, I., Fisikopoulos, V., Konaxis, C., Peñaranda, L.: An output-sensitive algorithm for computing projections of resultant polytopes. In: SoCG, pp. 179–188 (2012)Google Scholar
  16. 16.
    Fukuda, K.: cddlib, version 0.94f (2008), http://www.ifor.math.ethz.ch/~fukuda/cdd_home
  17. 17.
    Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes, pp. 43–74 (1999)Google Scholar
  18. 18.
    Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010), http://eigen.tuxfamily.org
  19. 19.
    Harville, D.A.: Matrix algebra from a statistician’s perspective. Springer, New York (1997)MATHCrossRefGoogle Scholar
  20. 20.
    Kaltofen, E., Villard, G.: On the complexity of computing determinants. Computational Complexity 13, 91–130 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Krattenthaler, C.: Advanced determinant calculus: A complement. Linear Algebra Appl. 411, 68 (2005)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Poole, D.: Linear Algebra: A Modern Introduction. Cengage Learning (2006)Google Scholar
  23. 23.
    Rambau, J.: TOPCOM: Triangulations of point configurations and oriented matroids. In: Cohen, A., Gao, X.S., Takayama, N. (eds.) Math. Software: ICMS, pp. 330–340. World Scientific (2002)Google Scholar
  24. 24.
    Rote, G.: Division-free algorithms for the determinant and the Pfaffian: algebraic and combinatorial approaches. Comp. Disc. Math., 119–135 (2001)Google Scholar
  25. 25.
    Sankowski, P.: Dynamic transitive closure via dynamic matrix inverse. In: Proc. IEEE Symp. on Found. Comp. Sci., pp. 509–517 (2004)Google Scholar
  26. 26.
    Seidel, R.: A convex hull algorithm optimal for point sets in even dimensions. Tech. Rep. 81-14, Dept. Comp. Sci., Univ. British Columbia, Vancouver (1981)Google Scholar
  27. 27.
    Sherman, J., Morrison, W.J.: Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. The Annals of Mathematical Statistics 21(1), 124–127 (1950)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Ziegler, G.: Lectures on Polytopes. Springer (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vissarion Fisikopoulos
    • 1
  • Luis Peñaranda
    • 1
  1. 1.Dept. of Informatics & TelecommunicationsUniversity of AthensAthensGreece

Personalised recommendations