Kinetic Compressed Quadtrees in the Black-Box Model with Applications to Collision Detection for Low-Density Scenes

  • Mark de Berg
  • Marcel Roeloffzen
  • Bettina Speckmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7501)

Abstract

We present an efficient method for maintaining a compressed quadtree for a set of moving points in ℝd. Our method works in the black-box KDS model, where we receive the locations of the points at regular time steps and we know a bound dmax on the maximum displacement of any point within one time step. When the number of points within any ball of radius dmax is at most k at any time, then our update algorithm runs in O(nlogk) time. We generalize this result to constant-complexity moving objects in ℝd. The compressed quadtree we maintain has size O(n); under similar conditions as for the case of moving points it can be maintained in O(n logλ) time per time step, where λ is the density of the set of objects. The compressed quadtree can be used to perform broad-phase collision detection for moving objects; it will report in O((λ + k)n) time a superset of all intersecting pairs of objects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abam, M.A., de Berg, M., Poon, S.-H., Speckmann, B.: Kinetic collision detection for convex fat objects. Algorithmica 53(4), 457–473 (2009)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Agarwal, P.K., Basch, J., Guibas, L.J., Hershberger, J., Zhang, L.: Deformable free-space tilings for kinetic collision detection. Int. J. Robotics Research 21(3), 179–197 (2002)CrossRefGoogle Scholar
  3. 3.
    Aluru, S., Sevilgen, F.E.: Dynamic compressed hyperoctrees with application to the N-body problem. In: Proc. 19th Conf. Found. Softw. Tech. Theoret. Comput. Sci., pp. 21–33 (1999)Google Scholar
  4. 4.
    Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. In: Proc. 8th ACM-SIAM Symp. Discr. Alg., pp. 747–756 (1997)Google Scholar
  5. 5.
    de Berg, M.: Linear size binary space partitions for uncluttered scenes. Algorithmica 28, 353–366 (2000)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer (2008)Google Scholar
  7. 7.
    de Berg, M., Haverkort, H., Thite, S., Toma, L.: Star-quadtrees and guard-quadtrees: I/O-efficient indexes for fat triangulations and low-density planar subdivisions. Comput. Geom. Theory Appl. 43, 493–513 (2010)MATHCrossRefGoogle Scholar
  8. 8.
    de Berg, M., Katz, M.J., van der Stappen, A.F., Vleugels, J.: Realistic input models for geometric algorithms. Algorithmica 34(1), 81–97 (2002)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    de Berg, M., Roeloffzen, M., Speckmann, B.: Kinetic convex hulls and Delaunay triangulations in the black-box model. In: Proc. 27th ACM Symp. Comput. Geom., pp. 244–253 (2011)Google Scholar
  10. 10.
    Borro, D., Garcia-Alonso, A., Matey, L.: Approximation of optimal voxel size for collision detection in maintainability simulations within massive virtual environments. Comp. Graph. Forum 23(1), 13–23 (2004)CrossRefGoogle Scholar
  11. 11.
    Chazelle, B.: Convex partitions of polyhedra: a lower bound and worst-case optimal algorithm. SIAM J. Comput. 13, 488–507 (1984)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Gao, J., Guibas, L.J., Nguyen, A.: Deformable spanners and applications. In: Proc. 20th ACM Symp. Comput. Geom., pp. 190–199 (2004)Google Scholar
  13. 13.
    Har-Peled, S.: Geometric Approximation Algorithms. American Mathematical Society (2011)Google Scholar
  14. 14.
    Kim, D.-J., Guibas, L.J., Shin, S.Y.: Fast collision detection among multiple moving spheres. IEEE Trans. Vis. Comp. Gr. 4, 230–242 (1998)CrossRefGoogle Scholar
  15. 15.
    Kirkpatrick, D., Snoeyink, J., Speckmann, B.: Kinetic collision detection for simple polygons. Int. J. Comput. Geom. Appl. 12(1-2), 3–27 (2002)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Kockara, S., Halic, T., Iqbal, K., Bayrak, C., Rowe, R.: Collision detection: A survey. In: Proc. of Systems, Man and Cybernetics, pp. 4046–4051 (2007)Google Scholar
  17. 17.
    Lin, M., Gottschalk, S.: Collision detection between geometric models: A survey. In: Proc. of IMA Conf. Math. Surfaces, pp. 37–56 (1998)Google Scholar
  18. 18.
    Moore, M., Wilhelms, J.: Collision detection and response for computer animation. SIGGRAPH Comput. Graph. 22, 289–298 (1988)CrossRefGoogle Scholar
  19. 19.
    Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G., Raghupathi, L., Fuhrmann, A., Cani, M., Faure, F., Thalmann, M.N., Strasser, W., Volino, P.: Collision detection for deformable objects. Comp. Graph. Forum 24, 119–140 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mark de Berg
    • 1
  • Marcel Roeloffzen
    • 1
  • Bettina Speckmann
    • 1
  1. 1.Dept. of Computer ScienceTU EindhovenThe Netherlands

Personalised recommendations