A Dual-Fitting \(\frac{3}{2}\)-Approximation Algorithm for Some Minimum-Cost Graph Problems

  • James M. Davis
  • David P. Williamson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7501)


In an ESA 2011 paper, Couëtoux [2] gives a beautiful \(\frac{3}{2}\)-approximation algorithm for the problem of finding a minimum-cost set of edges such that each connected component has at least k vertices in it. The algorithm improved on previous 2-approximation algorithms for the problem. In this paper, we reanalyze Couëtoux’s algorithm using dual-fitting and show how to generalize the algorithm to a broader class of graph problems previously considered in the literature.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bazgan, C., Couëtoux, B., Tuza, Z.: Complexity and approximation of the Constrained Forest problem. Theoretical Computer Science 412, 4081–4091 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Couëtoux, B.: A \(\frac{3}{2}\) Approximation for a Constrained Forest Problem. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 652–663. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Goemans, M.X., Williamson, D.P.: Approximating minimum-cost graph problems with spanning tree edges. Operations Research Letters 16, 183–189 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM Journal on Computing 24, 296–317 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Goemans, M.X., Williamson, D.P.: The primal-dual method for approximation algorithms and its application to network design problems. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-hard Problems, ch. 4. PWS Publishing, Boston (1996)Google Scholar
  6. 6.
    Imielińska, C., Kalantari, B., Khachiyan, L.: A greedy heuristic for a minimum-weight forest problem. Operations Research Letters 14, 65–71 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Kruskal, J.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society 7, 48–50 (1956)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Laszlo, M., Mukherjee, S.: Another greedy heuristic for the constrained forest problem. Operations Research Letters 33, 629–633 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Laszlo, M., Mukherjee, S.: A class of heuristics for the constrained forest problem. Discrete Applied Mathematics 154, 6–14 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Laszlo, M., Mukherjee, S.: An approximation algorithm for network design problems with downwards-monotone demand functions. Optimization Letters 2, 171–175 (2008)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • James M. Davis
    • 1
  • David P. Williamson
    • 1
  1. 1.School of Operations Research and Information EngineeringCornell UniversityIthacaUSA

Personalised recommendations