Advertisement

Time-Dependent Route Planning with Generalized Objective Functions

  • Gernot Veit Batz
  • Peter Sanders
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7501)

Abstract

We consider the problem of finding routes in road networks that optimize a combination of travel time and additional time-invariant costs. These could be an approximation of energy consumption, distance, tolls, or other penalties. The resulting problem is NP-hard, but if the additional cost is proportional to driving distance we can solve it optimally on the German road network within 2.3 s using a multi-label A* search. A generalization of time-dependent contraction hierarchies to the problem yields approximations with negligible errors using running times below 5 ms which makes the model feasible for high-throughput web services. By introducing tolls we get considerably harder instances, but still we have running times below 41 ms and very small errors.

Keywords

Travel Time Road Network Destination Node Optimal Route Bend Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Delling, D., Wagner, D.: Time-Dependent Route Planning. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 207–230. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Batz, G.V., Delling, D., Sanders, P., Vetter, C.: Time-Dependent Contraction Hierarchies. In: Proceedings of the 11th Workshop on Algorithm Engineering and Experiments (ALENEX 2009), pp. 97–105. SIAM (April 2009)Google Scholar
  3. 3.
    Delling, D.: Time-Dependent SHARC-Routing. Algorithmica 60(1), 60–94 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Batz, G.V., Geisberger, R., Neubauer, S., Sanders, P.: Time-Dependent Contraction Hierarchies and Approximation. In: [21], pp. 166–177Google Scholar
  5. 5.
    Brunel, E., Delling, D., Gemsa, A., Wagner, D.: Space-Efficient SHARC-Routing. In: [21], pp. 47–58Google Scholar
  6. 6.
    Vetter, C.: Parallel Time-Dependent Contraction Hierarchies. Student Research Project (2009), http://algo2.iti.kit.edu/download/vetter_sa.pdf
  7. 7.
    Dreyfus, S.E.: An Appraisal of Some Shortest-Path Algorithms. Operations Research 17(3), 395–412 (1969)zbMATHCrossRefGoogle Scholar
  8. 8.
    Orda, A., Rom, R.: Shortest-Path and Minimum Delay Algorithms in Networks with Time-Dependent Edge-Length. Journal of the ACM 37(3), 607–625 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Orda, A., Rom, R.: Minimum Weight Paths in Time-Dependent Networks. Networks 21, 295–319 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Dean, B.C.: Shortest Paths in FIFO Time-Dependent Networks: Theory and Algorithms. Technical report, Massachusetts Institute of Technology (1999)Google Scholar
  11. 11.
    Kieritz, T., Luxen, D., Sanders, P., Vetter, C.: Distributed Time-Dependent Contraction Hierarchies. In: [21], pp. 83–93Google Scholar
  12. 12.
    Geisberger, R., Kobitzsch, M., Sanders, P.: Route Planning with Flexible Objective Functions. In: Proceedings of the 12th Workshop on Algorithm Engineering and Experiments (ALENEX 2010), pp. 124–137. SIAM (2010)Google Scholar
  13. 13.
    Ahuja, R.K., Orlin, J.B., Pallottino, S., Scutellà, M.G.: Dynamic Shortest Paths Minimizing Travel Times and Costs. Networks 41(4), 197–205 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of \(\mathcal{NP}\)-Completeness. W.H. Freeman and Company (1979)Google Scholar
  15. 15.
    Foschini, L., Hershberger, J., Suri, S.: On the Complexity of Time-Dependent Shortest Paths. In: Proceedings of the 22nd Annual ACM–SIAM Symposium on Discrete Algorithms (SODA 2011), pp. 327–341. SIAM (2011)Google Scholar
  16. 16.
    Hansen, P.: Bricriteria Path Problems. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making–Theory and Application, pp. 109–127. Springer (1979)Google Scholar
  17. 17.
    Mandow, L., Pérez-de-la-Cruz, J.L.: Multiobjective A* Search with Consistent Heuristics. Journal of the ACM 57(5), 27:1–27:24 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact Routing in Large Road Networks Using Contraction Hierarchies. Transportation Science (2012) (accepted for publication)Google Scholar
  20. 20.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 230–241. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Festa, P. (ed.): SEA 2010. LNCS, vol. 6049. Springer, Heidelberg (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gernot Veit Batz
    • 1
  • Peter Sanders
    • 1
  1. 1.Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations