Simplifying Massive Contour Maps

  • Lars Arge
  • Lasse Deleuran
  • Thomas Mølhave
  • Morten Revsbæk
  • Jakob Truelsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7501)


We present a simple, efficient and practical algorithm for constructing and subsequently simplifying contour maps from massive high-resolution DEMs, under some practically realistic assumptions on the DEM and contours.


Digital Elevation Model Main Memory Output Point Simple Polygon Polygonal Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    TPIE - Templated Portable I/O-Environment,
  2. 2.
    Agarwal, P., Arge, L., Mølhave, T., Sadri, B.: I/O-efficient algorithms for computing contours on a terrain. In: Proc. Symposium on Computational Geometry, pp. 129–138 (2008)Google Scholar
  3. 3.
    Agarwal, P.K., Arge, L., Murali, T.M., Varadarajan, K., Vitter, J.S.: I/O-efficient algorithms for contour line extraction and planar graph blocking. In: Proc. ACM-SIAM Symposium on Discrete Algorithms, pp. 117–126 (1998)Google Scholar
  4. 4.
    Agarwal, P.K., Arge, L., Yi, K.: I/O-efficient batched union-find and its applications to terrain analysis. ACM Trans. Algorithms 7(1), 11:1–11:21 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Aggarwal, A., Vitter, S., Jeffrey: The input/output complexity of sorting and related problems. Commun. ACM 31(9), 1116–1127 (1988)CrossRefGoogle Scholar
  6. 6.
    Arge, L.: External memory data structures. In: Abello, J., Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of Massive Data Sets, pp. 313–358 (2002)Google Scholar
  7. 7.
    Arge, L., Larsen, K., Mølhave, T., van Walderveen, F.: Cleaning massive sonar point clouds. In: Proc ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems, pp. 152–161 (2010)Google Scholar
  8. 8.
    Cabello, S., Liu, Y., Mantler, A., Snoeyink, J.: Testing homotopy for paths in the plane. In: Proc. Symposium on Computational Geometry, pp. 160–169 (2002)Google Scholar
  9. 9.
    Carr, H., Snoeyink, J., van de Panne, M.: Flexible isosurfaces: Simplifying and displaying scalar topology using the contour tree. In: Computational Geometry, pp. 42–58 (2010) (Special Issue on the 14th Annual Fall Workshop)Google Scholar
  10. 10.
    Danner, A., Mølhave, T., Yi, K., Agarwal, P., Arge, L., Mitasova, H.: TerraStream: From elevation data to watershed hierarchies. In: Proc. ACM International Symposium on Advances in Geographic Information Systems, pp. 28:1–28:8 (2007)Google Scholar
  11. 11.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry – Algorithms and Applications (1997)Google Scholar
  12. 12.
    de Berg, M., van Kreveld, M., Schirra, S.: A new approach to subdivision simplification. In: Proc. 12th Internat. Sympos. Comput.-Assist. Cartog., pp. 79–88 (1995)Google Scholar
  13. 13.
    Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature (1973)Google Scholar
  14. 14.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: Proc. IEEE Symposium on Foundations of Computer Science, pp. 454–463 (2000)Google Scholar
  15. 15.
    Garland, M., Heckbert, P.: Surface simplification using quadric error metrics. In: Proc. Computer Graphics and Interactive Techniques, pp. 209–216 (1997)Google Scholar
  16. 16.
    Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proc. SIGMOD International Conference on Management of Data, pp. 47–57 (1984)Google Scholar
  17. 17.
    Heckbert, P.S., Garland, M.: Survey of polygonal surface simplification algorithms. Technical report, CS Dept., Carnegie Mellon U (to appear)Google Scholar
  18. 18.
    Hershberger, J., Snoeyink, J.: Computing minimum length paths of a given homotopy class. Comput. Geom. Theory Appl, 63–97 (1994)Google Scholar
  19. 19.
    Saalfeld, A.: Topologically consistent line simplification with the douglas peucker algorithm. In: Geographic Information Science (1999)Google Scholar
  20. 20.
    Vitter, J.: External memory algorithms and data structures: Dealing with MASSIVE data. ACM Computing Surveys, 209–271 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lars Arge
    • 1
  • Lasse Deleuran
    • 1
  • Thomas Mølhave
    • 2
  • Morten Revsbæk
    • 1
  • Jakob Truelsen
    • 3
  1. 1.MADALGO, Department of Computer ScienceAarhus UniversityDenmark
  2. 2.Department of Computer ScienceDuke UniversityUSA
  3. 3.SCALGO, Scalable AlgorithmicsDenmark

Personalised recommendations