Ultrasound Simulation on the Cell Broadband Engine Using the Westervelt Equation

  • Andrew A. Haigh
  • Bradley E. Treeby
  • Eric C. McCreath
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7439)

Abstract

The simulation of realistic medical ultrasound imaging is a computationally intensive task. Although this task may be divided and parallelized, temporal and spatial dependencies make memory bandwidth a bottleneck on performance. In this paper, we report on our implementation of an ultrasound simulator on the Cell Broadband Engine using the Westervelt equation. Our approach divides the simulation region into blocks, and then moves a block along with its surrounding blocks through a number of time steps without storing intermediate pressures to memory. Although this increases the amount of floating point computation, it reduces the bandwidth to memory over the entire simulation which improves overall performance. We also analyse how performance may be improved by restricting the simulation to regions that are affected by the transducer output pulse and that influence the final scattered signal received by the transducer.

Keywords

ultrasound simulation Westervelt equation Cell Broadband Engine parallelization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Matte, G.M., Van Neer, P.L.M.J., Danilouchkine, M.G., Huijssen, J., Verweij, M.D., de Jong, N.: Optimization of a phased-array transducer for multiple harmonic imaging in medical applications: frequency and topology. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(3), 533–546 (2011)CrossRefGoogle Scholar
  2. 2.
    Huang, J., Holt, R.G., Cleveland, R.O., Roy, R.A.: Experimental validation of a tractable numerical model for focused ultrasound heating in flow-through tissue phantoms. J. Acoust. Soc. Am. 116(4), 2451–2458 (2004)CrossRefGoogle Scholar
  3. 3.
    Wein, W., Brunke, S., Khamene, A., Callstrom, M.R., Navab, N.: Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention 12(5), 577–585 (2008)Google Scholar
  4. 4.
    Pinton, G., Dahl, J., Rosenzweig, S., Trahey, G.: A heterogeneous nonlinear attenuating full-wave model of ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 56(3), 474–488 (2009)CrossRefGoogle Scholar
  5. 5.
    Treeby, B.E., Tumen, M., Cox, B.T.: Time Domain Simulation of Harmonic Ultrasound Images and Beam Patterns in 3D Using the k-space Pseudospectral Method. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 363–370. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Karamalis, A., Wein, W., Navab, N.: Fast Ultrasound Image Simulation using the Westervelt Equation. Medical Image Computing and Computer-Assisted Intervention, 243–250 (2010)Google Scholar
  7. 7.
    Varray, F., Cachard, C., Ramalli, A., Tortoli, P., Basset, O.: Simulation of ultrasound nonlinear propagation on GPU using a generalized angular spectrum method. EURASIP Journal on Image and Video Processing 17 (2011)Google Scholar
  8. 8.
    Bader, D., Agarwal, V., Madduri, K., Kang, S.: High performance combinatorial algorithm design on the Cell Broadband Engine processor. Parallel Computing 33(10-11), 720–740 (2007)CrossRefGoogle Scholar
  9. 9.
    Chow, A., Fossum, G., Brokenshire, D.: A programming example: Large FFT on the Cell Broadband Engine (Online accessed January 24, 2012)Google Scholar
  10. 10.
    Bader, D., Agarwal, V.: FFTC: Fastest Fourier transform for the IBM Cell Broadband Engine. High Performance Computing, 172–184 (2007)Google Scholar
  11. 11.
    Xu, M., Thulasiraman, P.: Parallel Algorithm Design and Performance Evaluation of FDTD on 3 Different Architectures: Cluster, Homogeneous Multicore and Cell/BE. In: 10th IEEE International Conference on High Performance Computing and Communications, pp. 174–181. IEEE (2008)Google Scholar
  12. 12.
    Li, B., Jin, H., Shao, Z.: Two-Level Parallel Implementation of FDTD Algorithm on CBE. In: IEEE International Conference on Networking, Sensing and Control, pp. 1812–1817. IEEE (2008)Google Scholar
  13. 13.
    Hamilton, M.F., Blackstock, D.T. (eds.): Nonlinear Acoustics. Acoustical Society of America, Melville (2008)Google Scholar
  14. 14.
    Fornberg, B.: Generation of Finite Difference Formulas on Arbitrarily Spaced Grids. Mathematics of Computation 51(184), 699–706 (1988)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Hallaj, I., Cleveland, R.: FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound. Acoustical Society of America 105, 7–12 (1999)CrossRefGoogle Scholar
  16. 16.
    Kahle, J., Day, M., Hofstee, H., Johns, C., Maeurer, T., Shippy, D.: Introduction to the Cell multiprocessor. IBM Journal of Research and Development 49(4.5), 589–604 (2005)CrossRefGoogle Scholar
  17. 17.
    IBM: Cell Broadband Engine Programming Handbook (2008) (Online accessed January 24, 2012)Google Scholar
  18. 18.
    Koranne, S.: Practical computing on the Cell Broadband Engine. Springer, New York (2009)CrossRefGoogle Scholar
  19. 19.
    IBM: C/C++ Language Extensions for Cell Broadband Engine Architecture. vol. 2.4 (March 2007)Google Scholar
  20. 20.
    Jensen, J.A., Munk, P.: Computer phantoms for simulating ultrasound B-mode and cfm images. In: 23rd Acoustical Imaging Symposium, pp. 75–80 (1997)Google Scholar
  21. 21.
    Daoud, M., Lacefield, J.: Parallel three-dimensional simulation of ultrasound imaging. In: 22nd International Symposium on High Performance Computing Systems and Applications, pp. 146–152. IEEE (2008)Google Scholar
  22. 22.
    Liu, Q.: Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm. IEEE Transactions on Geoscience and Remote Sensing 37(2), 917–926 (1999)CrossRefGoogle Scholar
  23. 23.
    Tabei, M., Mast, T., Waag, R.: A k-space method for coupled first-order acoustic propagation equations. The Journal of the Acoustical Society of America 111, 53–63 (2002)CrossRefGoogle Scholar
  24. 24.
    Purrington, R.D., Norton, G.V.: A numerical comparison of the westervelt equation with viscous attenuation and a causal propagation operator. Mathematics and Computers in Simulation 82(7), 1287–1297 (2012)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrew A. Haigh
    • 1
  • Bradley E. Treeby
    • 2
  • Eric C. McCreath
    • 1
  1. 1.Research School of Computer ScienceThe Australian National UniversityAustralia
  2. 2.Research School of EngineeringThe Australian National UniversityAustralia

Personalised recommendations