Advertisement

Performance Evaluation of OpenMP and CUDA on Multicore Systems

  • Chao-Tung Yang
  • Tzu-Chieh Chang
  • Kuan-Lung Huang
  • Jung-Chun Liu
  • Chih-Hung Chang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7440)

Abstract

Nowadays, not only CPU but also GPU goes along the trend of multi-core processors. Parallel processing presents not only an opportunity but also a challenge at the same time. To explicitly parallelize the software by programmers or compilers is the key for enhancing the performance on multi-core chip. In this paper, we first introduce some of the automatic parallel tools based OpenMP, which could save the time to rewrite codes for parallel processing on multicore system. Then we focus on ROSE and explore it in depth. And we also implement an interface to reduce its complexity of use and use some automatic parallelization for CUDA.

Keywords

Auto-Parallel Parallel Programming Multicore OpenMP CUDA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yang, C.T., Huang, C.L., Lin, C.F.: Hybrid CUDA, OpenMP, and MPI Parallel Programming on Multicore GPU Clusters. Computer Physics Communications 182(1), 266–269 (2010)CrossRefGoogle Scholar
  2. 2.
    Yang, C.T., Huang, C.L., Lin, C.F., Chang, T.C.: Hybrid Parallel Programming on GPU Clusters. In: International Symposium on Parallel and Distributed Processing with Applications, ISPA 2010, pp. 142–147 (September 2010)Google Scholar
  3. 3.
    Goddeke, D., Strzodka, R., Mohd-Yusof, J., McCormick, P., Buijssen, S., Grajewski, M., Tureka, S.: Exploring weak scalability for FEM calculations on a GPU-enhanced cluster. Parallel Computing 33(10-11), 685–699 (2007)CrossRefGoogle Scholar
  4. 4.
    Bodin, F., Bihan, S.: Heterogeneous multicore parallel programming for graphics processing units. Scientific Programming 17, 325–336 (2009)Google Scholar
  5. 5.
    Dolbeau, R., Bihan, S., Bodin, F.: HMPP: A hybrid multi-core parallel programming environment. In: The Proceedings of the Workshop on General Purpose Processing on Graphics Processing Units, GPGPU 2007, Boston, Massachussets, USA, October 4 (2007)Google Scholar
  6. 6.
    Alonso, P., Cortina, R., Martinez-Zaldivar, F.J., Ranilla, J.: Neville elimination on multi- and many-core systems: OpenMP, MPI and CUDA. J. Supercomputing, doi:10.1007/s11227-009-0360-z (SpringerLink Online Date: November 18, 2009) (in press)Google Scholar
  7. 7.
    Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Skadron, K.: A performance study of general-purpose applications on graphics processors using CUDA. Journal of Parallel and Distributed Computing 68(10), 1370–1380 (2008)CrossRefGoogle Scholar
  8. 8.
    Liao, C., Quinlan, D.J., Panas, T., de Supinski, B.R.: A ROSE-Based OpenMP 3.0 Research Compiler Supporting Multiple Runtime Libraries. In: Sato, M., Hanawa, T., Müller, M.S., Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132, pp. 15–28. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Liao, C., Quinlan, D.J., Willcock, J.J., Panas, T.: Semantic-Aware Automatic Parallelization of Modern Applications Using High-Level Abstractions. International Journal of Parallel Programming 38(5-6), 361–378 (2010)zbMATHCrossRefGoogle Scholar
  10. 10.
    Carribault, P., Pérache, M., Jourdren, H.: Enabling Low-Overhead Hybrid MPI/OpenMP Parallelism with MPC. In: Sato, M., Hanawa, T., Müller, M.S., Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132, pp. 1–14. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
  12. 12.
  13. 13.
  14. 14.
    Open MP Specification, http://openmp.org/wp/about-openmp/
  15. 15.
  16. 16.
    Intel® Threading Building Blocks, http://www.threadingbuildingblocks.org/
  17. 17.
  18. 18.
  19. 19.
  20. 20.
    MPICH, A Portable Implementation of MPI, http://www.mcs.anl.gov/research/projects/mpi/mpich1/index.htm
  21. 21.
  22. 22.
    Specification Tesla S1070 GPU Computing System, http://www.nvidia.com/docs/IO/43395/SP-04154-001_v02.pdf
  23. 23.
  24. 24.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chao-Tung Yang
    • 1
  • Tzu-Chieh Chang
    • 1
  • Kuan-Lung Huang
    • 1
  • Jung-Chun Liu
    • 1
  • Chih-Hung Chang
    • 2
  1. 1.Department of Computer ScienceTunghai UniversityTaichung CityTaiwan
  2. 2.Department of Information ManagementHsiuping University of Science TechnologyTaichung CityTaiwan

Personalised recommendations