Technological Challenges of Pediatric MEG and Potential Solutions: The Aston Experience

  • Caroline Witton
  • Paul L. Furlong
  • Stefano Seri


Magnetoencephalography (MEG) offers significant opportunities for the localization and characterization of focal and generalized epilepsies, but its potential has so far not been fully exploited, as the evidence for its effectiveness is still anecdotal. This is particularly true for pediatric epilepsy. MEG recordings on school-age children typically rely on the use of MEG systems that were designed for adults and children’s smaller head-size and stature can cause significant problems. Reduced signal-to-noise ratio when recording from smaller heads, increased movement, reduced sensor coverage of anterior temporal regions and incomplete insertion into the MEG helmet can all reduce the quality of data collected from children. We summarize these challenges and suggest some practical solutions.


MEG Children Pediatric epilepsy Clinical applications Brain maturation 


  1. Abramov I, Hainline L, Turkel J, Lemerise E, Smith H, Gordon J, Petry S (1984) Rocket-ship psychophysics. assessing visual functioning in young children. Invest Ophthalmol Vis Sci 25:1307–1315Google Scholar
  2. Adjamian P, Barnes GR, Hillebrand A, Holliday IE, Singh KD, Furlong PL, Harrington E, Barclay CW, Route PJG (2004) Coregistration of magnetoencephalography with magnetic resonance imaging using bite-bar-based fiducials and surface-matching. Clin Neurophysiol 115:691–698CrossRefGoogle Scholar
  3. Agirre-Arrizubieta Z, Huiskamp GJ, Ferrier CH, Van Huffelen AC, Leijten FS (2009) Interictal magnetoencephalography and the irritative zone in the electrocorticogram. Brain 132(11):3060–3071CrossRefGoogle Scholar
  4. Barry JG, Ferguson MA, Moore DR (2010) Making sense of listening: the imap test battery. J Visualized Exp 11:e2139Google Scholar
  5. De Jongh A, De Munck JC, Goncalves SI, Ossenblok P (2005) Differences in MEG/EEG epileptic spike yields explained by regional differences in signal-to-noise ratios. J Clin Neurophysiol 22:153–158CrossRefGoogle Scholar
  6. Gaetz W, Cheyne D, Rutka JT, Drake J, Benifla M, Strantzas S, Widjaja E, Holowka S, Tovar-Spinoza Z, Otsubo H, Pang EW (2009) Presurgical localization of primary motor cortex in pediatric patients with brain lesions by the use of spatially filtered magnetoencephalography. Neurosurgery 64:177–185CrossRefGoogle Scholar
  7. Gaetz W, Otsubo H, Pang EW (2008) Magnetoencephalography for clinical pediatrics: the effect of head positioning on measurement of somatosensory-evoked fields. Clin Neurophysiol 119:1923–1933CrossRefGoogle Scholar
  8. Hauser WA (1995) Epidemiology of epilepsy in children. Neurosurg Clin N Am 6:419–429Google Scholar
  9. Hillebrand A, Barnes GR (2002) A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex. Neuroimage 16:638–650CrossRefGoogle Scholar
  10. Jeha LE, Najm I, Bingaman W, Dinner D, Widdess-Walsh P, Luders H (2007) Surgical outcome and prognostic factors of frontal lobe epilepsy surgery. Brain 130:574–584CrossRefGoogle Scholar
  11. Johnson BW, Crain S, Thornton R, Tesan G, Reid M (2010) Measurement of brain function in pre-school children using a custom sized whole-head MEG sensor array. Clin Neurophysiol 121(3):249–340CrossRefGoogle Scholar
  12. Kaiboriboon K, Nagarajan S, Mantle M, Kirsch HE (2010) Interictal MEG/MSIin intractable mesial temporal lobe epilepsy: spike yield and characterization. Clin Neurophysiol 121(3):325–331CrossRefGoogle Scholar
  13. Kakisaka Y, Wang ZI, Mosher JC, Dubarry AS, Alexopoulos AV, Enatsu R, Kotagal P, Burgess RC (2012) Clinical evidence for the utility of movement compensation algorithm in magnetoencephalography: successful localization during focal seizure. Epilepsy Res 101(1–2):191–196CrossRefGoogle Scholar
  14. Kirsch HE, Robinson SE, Mantle M, Nagarajan S (2006) Automated localization of magnetoencephalographic interictal spikes by adaptive spatial filtering. Clin Neurophysiol 117(10):2264–2267CrossRefGoogle Scholar
  15. Knowlton RC, Laxer KD, Aminoff MJ, Roberts TP, Wong ST, Rowley HA (1997) Magnetoencephalography in partial epilepsy: clinical yield and localization accuracy. Ann Neurol 42:622–631CrossRefGoogle Scholar
  16. Leijten FS, Huiskamp GJ, Hilgersom I, Van Huffelen AC (2003) High-resolution source imaging in mesiotemporal lobe epilepsy: a comparison between MEG and simultaneous EEG. J Clin Neurophysiol 20(4):227–238CrossRefGoogle Scholar
  17. Lin YY, Shih YH, Hsieh JC, Yu HY, Yiu CH, Yeh TC, Wong TT, Kwan SY, Ho LT, Yen DJ, Wu ZA, Chang MS (2003) Magnetoencephalographic yield of interictal spikes in temporal lobe epilepsy. Comparison with scalp EEG recordings. Neuroimage 19(3):1115–1126CrossRefGoogle Scholar
  18. Medvedovsky M, Taulu S, Gaily E, Metsähonkala El, Mäkelä JP, Ekstein D, Kipervasser S, Neufeld MY, Kramer U, Blomstedt G, Fried I, Karppinen A, Veshchev I, Roivainen R, Ben-Zeev B, Goldberg-Stern H, Wilenius J, Paetau R (2012) Sensitivity and specificity of seizure-onset zone estimation by ictal magnetoencephalography. Epilepsia 53(9):1649–1657CrossRefGoogle Scholar
  19. Okada Y, Pratt K, Atwood C, Mascarenas A, Reineman R, Nurminen J, Paulson D (2006) BabySQUID: a mobile, high-resolution multichannel magnetoencephalography system for neonatal brain assessment. Rev Sci Instrum 77:1–9Google Scholar
  20. Ossenblok P, De Munck JC, Colon A, Drolsbach W, Boon P (2007) Magnetoencephalography is more successful for screening and localizing frontal lobe epilepsy than electroencephalography. Epilepsia 48:2139–2149CrossRefGoogle Scholar
  21. Robinson SE, Vrba (1999) Functional neuroimaging by synthetic aperture magnetometry (SAM). In: Yoshimoto T (ed) Recent advances in biomagnetism. Tohoku University Press, Sendai, pp 302–305Google Scholar
  22. Snyder RG, Spencer ML, Owings CL, Schneider LW (1975) In: Physical characteristics of children as related to death and injury for consumer product safety design. UM-HSRI-Bi-75-5. Consumer Product Safety Commission (USA). Available via DIALOG. http://Ovrt.Nist.Gov/Projects/Anthrokids/
  23. Sutherland ME, Zatorre RJ, Watkins KE, Hervé PY, Leonard G, Pike BG, Witton C, Paus T (2012) Anatomical correlates of dynamic auditory processing: relationship to literacy during early adolescence. Neuroimage 60:1287–1295CrossRefGoogle Scholar
  24. Nenonen J, Nurminen J, Kičić D, Bikmullina R, Lioumis P, Jousmäki V, Taulu S, Parkkonen L, Putaala M, Kähkönen S (2012) Validation of head movement correction and spatiotemporal signal space separation in magnetoencephalography. Clin Neurophysiol 123:2180–2191CrossRefGoogle Scholar
  25. Wennberg R, Valiante T, Cheyne D (2011) EEGand MEG in mesial temporal lobe epilepsy: where do the spikes really come from? Clin Neurophysiol 122(7):1295–1313CrossRefGoogle Scholar
  26. Wilson HS (2004) Continuous head-localization and data correction in a whole-cortex MEG sensor. Neurol Clin Neurophysiol 30:56Google Scholar
  27. Woods W, Gouws A, Green GGR (2012) Stereo camera MEG-MRI coregistration and head tracking. Poster presented at Biomag 2012, 18th international conference on biomagnetism, Paris, 26–30 August 2012Google Scholar
  28. Wellmer J, Weber B, Urbach H, Reul J, Fernandez GE (2009) Cerebral lesions can impair fMRI-based language lateralization. Epilepsia 50(10):2213–2224CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Caroline Witton
    • 1
  • Paul L. Furlong
    • 1
  • Stefano Seri
    • 1
    • 2
  1. 1.School of Life and Health Sciences, Aston Brain Centre, Wellcome Trust Laboratory for MEG StudiesAston UniversityBirminghamUK
  2. 2.Department of Clinical Neurophysiology and Pediatric Epilepsy Surgery ProgramThe Birmingham Children’s Hospital NHS Foundation TrustBirminghamUK

Personalised recommendations