Clustering on Dynamic Social Network Data

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 190)

Abstract

This paper presents a reference data set along with a labeling for graph clustering algorithms, especially for those handling dynamic graph data. We implemented a modification of Iterative Conductance Cutting and a spectral clustering. As base data set we used a filtered part of the Enron corpus. Different cluster measurements, as intra-cluster density, inter-cluster sparseness, and Q-Modularity were calculated on the results of the clustering to be able to compare results from other algorithms.

Keywords

Clustering cluster measurements Enron data set graph clustering stream data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberts, D., Cattaneo, G., Italiano, G.F.: An empirical study of dynamic graph algorithms. J. Exp. Algorithm 2 (1997)Google Scholar
  2. 2.
    Brandes, U., Delling, D., Gaertler, M., Goerke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20, 172–188 (2008)CrossRefGoogle Scholar
  3. 3.
    Brandes, U., Gaertler, M., Wagner, D.: Experiments on Graph Clustering Algorithms. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 568–579. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Delling, D., Gaertler, M., Görke, R., Nikoloski, Z., Wagner, D.: How to evaluate clustering techniques. Tech. Rep. 24, Fakultät für Informatik, Universität Karlsruhe (2006)Google Scholar
  5. 5.
    van Dongen, S.M.: Graph clustering by flow simulation. Ph.D. thesis, University Utrecht (2001)Google Scholar
  6. 6.
    Flake, G.W., Tarjan, R.E., Tsioutsiouliklis, K.: Graph clustering and minimum cut trees. Internet Math. 1, 385–408 (2004)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Gaertler, M.: Clustering with spectral methods. Master’s thesis, University of Konstanz (2002)Google Scholar
  8. 8.
    Görke, R., Hartmann, T., Wagner, D.: Dynamic Graph Clustering Using Minimum-Cut Trees. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 339–350. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Held, P., Moewes, C., Braune, C., Kruse, R., Sabel, B.A.: Advanced Analysis of Dynamic Graphs in Social and Neural Networks. In: Borgelt, C., Gil, M.Á., Sousa, J.M.C., Verleysen, M. (eds.) Towards Advanced Data Analysis. STUDFUZZ, vol. 285, pp. 205–222. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Kannan, R., Vempala, S., Vetta, A.: On clustering: Good, bad and spectral. J. ACM 51, 497–515 (2004)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Kim, K., McKay, R., Moon, B.R.: Multiobjective evolutionary algorithms for dynamic social network clustering. In: Proc. of the 12th Ann. Conf. on Genetic and Evolutionary Computation (GECCO 2010), pp. 1179–1186. ACM, New York (2010)CrossRefGoogle Scholar
  12. 12.
    Klimt, B., Yang, Y.: The Enron Corpus: A New Dataset for Email Classification Research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In: Proc. of the 12th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 611–617. ACM, New York (2006)CrossRefGoogle Scholar
  14. 14.
    von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026, 113 (2004)Google Scholar
  16. 16.
    Wassermann, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1997)Google Scholar
  17. 17.
    White, D.R., Harary, F.: The cohesiveness of blocks in social networks: Node connectivity and conditional density. Sociol. Methodol. 31, 305–359 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Computer ScienceOtto-von-Guericke University of MagdeburgMagdeburgGermany

Personalised recommendations