Advertisement

Abstract

Uncertainty models such as sets of desirable gambles and (conditional) lower previsions can be represented as convex cones. Checking the consistency of and drawing inferences from such models requires solving feasibility and optimization problems. We consider finitely generated such models. For closed cones, we can use linear programming; for conditional lower prevision-based cones, there is an efficient algorithm using an iteration of linear programs. We present an efficient algorithm for general cones that also uses an iteration of linear programs.

Keywords

Consistency convex cones feasibility inference linear programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avis, D., Bremner, D., Seidel, R.: How good are convex hull algorithms? Comput. Geom-Theor. Appl. 7(5-6), 265–301 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Coletti, G., Scozzafava, R.: Probabilistic logic in a coherent setting. Kluwer Academic Publishers, Dordrecht (2002)CrossRefGoogle Scholar
  3. 3.
    Couso, I., Moral, S.: Sets of desirable gambles: conditioning, representation, and precise probabilities. Int. J. Approx. Reason. 52(7), 1034–1055 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Quaeghebeur, E.: Desirability. In: Coolen, F.P.A., Augustin, T., De Cooman, G., Troffaes, M.C.M. (eds.) Introduction to Imprecise Probabilities. John Wiley & Sons, Ltd., New York City (at the editor)Google Scholar
  5. 5.
    Quaeghebeur, E.: murasyp: Python software for accept/reject statement-based uncertainty modeling (in progress), http://equaeghe.github.com/murasyp
  6. 6.
    Quaeghebeur, E., De Cooman, G., Hermans, F.: Accept & reject statement-based uncertainty models (in preparation)Google Scholar
  7. 7.
    Rinaldi, F., Schoen, F., Sciandrone, M.: Concave programming for minimizing the zero-norm over polyhedral sets. Comput. Optim. Appl. 46(3), 467–486 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman & Hall, London (1991)zbMATHGoogle Scholar
  9. 9.
    Walley, P.: Towards a unified theory of imprecise probability. Int. J. Approx. Reason. 24(2-3), 125–148 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Walley, P., Pelessoni, R., Vicig, P.: Direct algorithms for checking consistency and making inferences from conditional probability assessments. J. Stat. Plan. Infer. 126(1), 119–151 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Ziegler, G.M.: Lectures on Polytopes. Springer, Berlin (1995)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Systems Research GroupGhent UniversityGhentBelgium

Personalised recommendations