Statistical Hypothesis Test for the Difference between Hirsch Indices of Two Pareto-Distributed Random Samples

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 190)

Abstract

In this paper we discuss the construction of a new parametric statistical hypothesis test for the equality of probability distributions. The test bases on the difference between Hirsch’s h-indices of two equal-length i.i.d. random samples. For the sake of illustration, we analyze its power in case of Pareto-distributed input data. It turns out that the test is very conservative and has wide acceptance regions, which puts in question the appropriateness of the h-index usage in scientific quality control and decision making.

Keywords

Aggregation operators Hirsch index hypotheses testing scientometrics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    David, H.A., Nagaraja, H.N.: Order Statistics. Wiley (2003)Google Scholar
  2. 2.
    Dubois, D., Prade, H., Testemale, C.: Weighted fuzzy pattern matching. Fuzzy Set. Syst. 28, 313–331 (1988)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Gagolewski, M.: Bibliometric impact assessment with R and the CITAN package. J. Informetr. 5(4), 678–692 (2011)CrossRefGoogle Scholar
  4. 4.
    Gągolewski, M., Grzegorzewski, P.: Arity-Monotonic Extended Aggregation Operators. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. CCIS, vol. 80, pp. 693–702. Springer, Heidelberg (2010a)CrossRefGoogle Scholar
  5. 5.
    Gągolewski, M., Grzegorzewski, P.: S-Statistics and Their Basic Properties. In: Borgelt, C., González-Rodríguez, G., Trutschnig, W., Lubiano, M.A., Gil, M.Á., Grzegorzewski, P., Hryniewicz, O. (eds.) Combining Soft Computing and Statistical Methods in Data Analysis. AISC, vol. 77, pp. 281–288. Springer, Heidelberg (2010b)CrossRefGoogle Scholar
  6. 6.
    Gagolewski, M., Grzegorzewski, P.: Axiomatic characterizations of (quasi-) L-statistics and S-statistics and the producer assessment problem. In: Galichet, S., Montero, J., Mauris, G. (eds.) Proc. Eusflat/LFA 2011, pp. 53–58 (2011)Google Scholar
  7. 7.
    Grabisch, M., Pap, E., Marichal, J.L., Mesiar, R.: Aggregation Functions. Cambridge Univeristy Press (2009)Google Scholar
  8. 8.
    Hirsch, J.E.: An index to quantify individual’s scientific research output. P. Natl. Acad. Sci. USA 102(46), 16569–16572 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Systems Research InstitutePolish Academy of SciencesWarsawPoland
  2. 2.Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland

Personalised recommendations